
Improvement of the automation in the coq-waterproof library
M1 intership report

Balthazar Patiachvili

10/04/2023 – 23/06/2023

Under the supervision of Jim Portegies

Abstract

Improving logical reasoning is an essential skill that all science students must acquire.
To aid in this learning process, some universities have started using proof assistants.
However, the syntax of these assistants can be unclear and learning how to use them
effectively poses a significant challenge, limiting their utility. Addressing this issue, we
present the coq-waterproof library, a Coq plugin designed to write proofs in natural
language, resembling pen-and-paper style as closely as possible. To streamline the proof
development process and avoid wasting time on uninteresting aspects, we improved the
existing automation system based on Coq’s auto tactic. Our primary focus lies on this
specific aspect: enhancing automation capabilities in a general sense. Two main compo-
nents have been scrutinized in detail. First, we have introduced a proof control mech-
anism during proof searches, allowing for proofs’ rejection based on arbitrary criteria.
Secondly, we have added automated rewriting steps between proof searches, leveraging
current hypotheses, reinforcing the fluidity of the proofs written. These advancements
required the development of an extended version of the tactic monad from Coq’s OCaml
API. Additionally, we have implemented an optimization technique enabling efficient
cuts during proof searches, thus reducing the execution time of the automation routine.
Overall, this work lays a foundation for further improvements. Future research should
build upon our findings, focusing on making the coq-waterproof tool more accessible
and user-friendly. Bridging the gap between proofs generated by coq-waterproof and
these crafted manually on paper remains a key goal.

1

Contents
1 Introduction 3

1.1 Context . 3
1.2 Waterproof . 4
1.3 Internship . 4
1.4 Tools used . 5

2 Coq proofs 5
2.1 Proof state . 5
2.2 Tactics . 6

2.2.1 General description . 6
2.2.2 OCaml’s tactic monad . 6
2.2.3 Typed tactics (contribution) . 7

3 Automation control 8
3.1 Prolog and auto . 8

3.1.1 Prolog . 9
3.1.2 auto . 9

3.2 Control at the end of the proof search (contribution) 10
3.3 Control during the proof search (contribution) 11

4 Automated rewriting 13
4.1 Rewriting and autorewrite . 13
4.2 Automated use of hypotheses (contribution) 13

5 Optimization 14
5.1 Internal proof state . 15
5.2 Branch skipping in the proof search tree (contribution) 15

6 Conclusion 16

References 17

Annexes 18
A Typed tactics functor . 18
B OCaml trace implementation . 19
C Description of wp_auto . 19
D Example of successful optimization . 19

2

Internship context
The present document is a report for my M1 short internship that is part of my curriculum

at the ENS Paris-Saclay. This internship took place at the CASA team of the Eindhoven
University of Technology in the Netherlands under the supervision of Jim Portegies.

I would like to thank Jim Portegies, Jelle Wemmenhove as well as the CASA team for their
warm welcome, for the nice atmosphere in which I spent three months and for their sympathy.

Note: As I chose to do a short internship and had to start it before my exams, I left the
internship one week to take four exams at the ENS Paris.

1 Introduction

1.1 Context
Acquiring the skill of performing logically coherent reasoning is a vital component during

the initial years of a bachelor’s degree in science. However, this task can be challenging
for students who may encounter difficulties when it comes to writing mathematical proofs.
Whether it’s the intricacies of structuring a proof or the uncertainty surrounding the validity
of an argument, issues can arise at various stages of the proving process.

To facilitate the acquisition of logical reasoning skills, several universities have incorporated
proof assistants such as Coq or Lean into their curriculum. Proof assistants, also known
as interactive theorem provers, are software tools designed to aid humans in constructing
formal proofs. The benefits of utilizing these tools vary depending on the specific proof
assistant chosen, but they all share a common feature: ensuring the validity of every written
proof. In particular, Coq, the proof assistant utilized during this internship, offers users the
ability to track the progress of their proofs at each step, providing immediate feedback on
their actions and aiding their understanding of the current state of the proof. This real-time
feedback mechanism proves invaluable in guiding students through the process of constructing
rigorous and logically coherent arguments. The article [6] shows this point with an experiment
where students had to use Coq as a learning tool in an introductory course on logic and data
structures. The results show that Coq can be beneficial for undergraduate students in their
learning process of formal proofs.

Nevertheless, the ability to write formal proofs in Coq does not always lead to the ability
to write paper proofs. Indeed, the same study [6] found that some students using Coq had
the worst score at writing proofs in natural language. On the counter part, another study
[7] involving students learning Lean and not Coq shows that the students who had attended
Lean voluntary classes had better grades in the final examination than the group of students
that did not attend these classes regularly. This enlightens the fact that courses using proof
assistants are not widespread, and further studies should be done to have a better idea on
their potential utility.

Moreover, their use can be arduous for inexperienced users. Indeed, most undergraduate
mathematic students have little to zero knowledge about the proof assistants’ syntax which
can be hard to learn from scratch because the structure and a complete proof can be unclear
and confusing.

3

1.2 Waterproof
To address the issues described above, a team of members of the Eindhoven University

of Technology (TU/e) created Waterproof [1], a software for educational purpose, based on
coq-waterproof, a Coq library written in Ltac2, allowing users to make proofs in natural
language. The proofs can be constructed with predefined english sentences, making it look
like a real pen-and-paper proof. It is expected that by using this library as a complement
during the learning process of making sound proofs, the skills obtained with the manipulation
of Waterproof will transfer to the handwritten proofs. The figures 1 and 2 present two simple
proofs for the same property, one only using Coq, and the other one using the coq-waterproof
library, showing the focus on the accessibility for non-expert users.

1 Goal forall n m: nat, n = 0 -> S m <> n.
2 Proof.
3 intros n m H H'.
4 rewrite H in H'.
5 inversion H'.
6 Qed.

Figure 1: Example of a Coq proof of ∀n,m ∈ N, n = 0 =⇒ m+ 1 ̸= n

1 Goal forall n m: nat, n = 0 -> S m <> n.
2 Proof.
3 Take n, m: nat.
4 Assume that (n = 0).
5 We conclude that (S m <> n).
6 Qed.

Figure 2: Example of a coq-waterproof proof of ∀n,m ∈ N, n = 0 =⇒ m+ 1 ̸= n

Waterproof has been used for several years as an optional complement for some mathe-
matical analysis courses at the TU/e. During the year 2021-2022, while some students that
tried Waterproof dropped its use before the final assignment, a non insignifiant part of the
class kept it until the end [1], showing that this type of project can really be useful.

1.3 Internship
In this context, this internship focused on the development of Waterproof’s automation

system called waterprove. Indeed, to be interesting as a pedagogical tool, students should focus
on proving something that is non-trivial for humans (e.g ∀ε ∈ R, ε > 0 =⇒ ε

2
> 0). This is why

very powerful tactics are used, such as lra or nra that are decision procedure for respectively
linear and non-linear real or rational arithmetic. However, having the most powerful automatic
prover is not either something that we want to reach: if every lemma/theorem can be proved
automatically, there is no point in using this software to learn how to make sound proofs.

Thus, the two main axes of research during this internship were to give more control on
the automatic search for a proof to be able to reject an unwanted proof (section 3) and to
make the automation system more powerful, here by considering rewrites using equalities in
the hypothesis (section 4). Furthermore, these new implementations made the execution time
greatly increased, hence it was needed to optimize the existing algorithms (section 5). Finally,

4

to implement these new algorithms into Coq, it was needed to consider the OCaml’s tactic
system (section 2.2) and to expand it to be able to create typed tactics.

1.4 Tools used
This project is written in Ltac2, in Coq 8.17.0, to which was added OCaml 4.14.1 during

this internship. The source code of the project is available on GitHub at: https://github.
com/impermeable/coq-waterproof. My repository, on which the development was made, is
available at: https://github.com/BalthazarPatiachvili/coq-waterproof. The OCaml
API with comments of my repository is available at: https://balthazarpatiachvili.
github.io/coq-waterproof/ocaml/.

Before this internship, this library was fully written in Ltac2. However, for various reasons
explained later in this report, it was needed to use OCaml pieces of code: a long work has
been made to transfer the existing library into a Coq plugin, mainly because of the huge lack
of documentation and explanation in the Coq’s source code (available in [3]).

2 Coq proofs
In this section, OCaml will be used several times. Thus, 'a , 'b , . . . represent types such

that 'a means "for all types ’a".

2.1 Proof state
In Coq, two modes are available: the default environment to, among others, code in

Gallina, a functional programming language, and the proof environment to build proofs with
tactics (see 2.2) called the proof mode [2]. It is possible to enter the proof mode by declaring a
new goal, lemma or theorem with respectively Goal , Lemma or Theorem . The proof mode
ends with either Qed to indicate that the proof is finished and complete (what had to be
demonstrated is proved), Abort to end the proof before its end or Admitted to admit that
the property is true without proving it entirely.

The proof state is a set of one or several unproved goals. Each goal contains a conclu-
sion, a local context with the current local named hypothesis, variables and definitions. It is
also possible to use definitions, axioms, proved theorems, . . . defined beforehand in the global
environment. Tactics, more detailed in 2.2, change the current proof state.

1 Goal forall n m: nat, n = 0 -> S m <> n.
2 Proof.
3 intros n m H H'.
4 rewrite H in H'.
5 inversion H'.
6 Qed.

Figure 3: Example of a proof of ∀n,m ∈ N, n = 0 =⇒ m+ 1 ̸= n in Coq

For example, the figure 3 shows a simple proof in Coq:

• at the beginning of the proof, there is no hypothesis and the only conclusion is the one
declared as the main goal: forall n m: nat, n = 0 -> S m <> n ;

5

https://github.com/impermeable/coq-waterproof
https://github.com/impermeable/coq-waterproof
https://github.com/BalthazarPatiachvili/coq-waterproof
https://balthazarpatiachvili.github.io/coq-waterproof/ocaml/
https://balthazarpatiachvili.github.io/coq-waterproof/ocaml/

• after the tactic intros n m H H'. , the conclusion became False , two variables and
two hypothesis have been declared, namely n: nat and m: nat , and H: n = 0 and
H': S m = n ;

• after the tactic rewrite H in H'. , only the hypothesis H' changed, becoming
H': S m = 0 ;

• the last tactic, inversion H'. concluded the goal, finishing to prove the only conclu-
sion.

2.2 Tactics
2.2.1 General description

Tactics are at the core of Coq’s proof mechanism [2]. They transform the current proof
state of an incomplete proof in order to make the proof complete. Tactics are more specifically
special functions that will manipulate the proofs by either proving one or more goals – or more
generally by replacing the current goal with one or more new ones – or by adding or modifying
one of the hypothesis.

It is now important to make a distinction between the Coq tactics and the OCaml ones.
Indeed, while Coq tactics represent a full operation on the current proof environment, like
introducing a new variable bounded by a ∀-quantifier with intros or rewriting a subterm
with an equal subterm with rewrite , OCaml tactics only consist in small monadic operations
(see 2.2.2). In this report, whenever it is not specified, it is assumed that "tactic" is referring
to an OCaml tactic and not a Coq one.

Tactic A Tactic B . . .
Monadic operations

Tactic Z

Monadic
operation

Coq tactic

OCaml tactic

Figure 4: Simplified representation of the tactic system

Coq tactics offer a high level of abstraction, which is really useful when trying to create
a proof. Moreover, to create new tactics the Ltac and Ltac2 languages allow the user to
easily build their own on the top of Coq tactics. This is why before this internship, all the
coq-waterproof library was written in Ltac2. However, to have more expressivity in tactics’
construction, it is needed to use Coq’s OCaml interface: Ltac2 does not provide enough
structures and flow control to be able to build a tactic that is not just a juxtaposition of
others.

2.2.2 OCaml’s tactic monad

A monad is a structure combining functions and wrapping their return values in a type
enriched by additional computation. A monad can be created by the two following functions
(with 'a t the monadic type wrapping the type 'a) :

6

1 val return : 'a -> 'a t
2 val bind : 'a t -> ('a -> 'b t) -> 'b t

return is used to create a monadic value of type 'a t from a value of type 'a , and
bind will try to transform a wrapped value of type 'a t in a wrapped value of type 'b t
by the given function.

'a 'a t 'a t 'b t
'a −→ 'b t

return bind

Figure 5: Representation of monadic functions return and bind

In OCaml, tactics are represented as monadic objects, defined in the file engine/proofview.ml
of the Coq’s source code [3]. For a given type 'a , the corresponding monadic type is
'a tactic , and the functions tclUNIT and tclBIND , respectively equivalent to return
and bind, are available, allowing to create all the necessary tactics.

Now, let’s give the intuition behind this monad: each Coq tactic corresponds to a
unit tactic . Therefore, a tactic can be considered as a function that will return a value
that can be used in the definition of another tactic thanks to the tclBIND function. With this
intuition, Coq tactics are functions modifying the environment while returning a unit value.
Thus, it is possible to use all the functions defined around the tactic monad, we just have to
ensure that the final output has the right type, and all the intermediary tactics can have any
wanted type. However, as the vast majority of tactics in Coq’s source code (so in OCaml)
have a type of unit tactic , making a lot of useful function to only support unit tactic
and not 'a tactic . The need of tactics with a different type from unit tactic , which
will be called typed tactics1 in this report, is explained in the section 3.

2.2.3 Typed tactics (contribution)

Some functions from the Coq’s OCaml API using tactics were needed during the imple-
mentation of the algorithms presented in 3. However, to make these algorithms work, it is
important to get non-unit values as tactics’ output, and these functions could only deal with
unit tactic . This idea has been found after reading the article [4] presenting Mtac2, a Coq
plugin implementing typed tactics for backward reasoning. The introduced features are very
similar to the ones wanted (that are described below), nevertheless, this is not usable in our
context because we needed the proof flow control offered by OCaml, which is more powerful
than the one of Coq.

The figure 6 shows examples of required functions from the Proofview module of Coq’s
OCaml API that were not general enough. During the major part of the internship, these
functions were developed only for the needed types: for example, with trace a type used in
the section 3, the following functions were defined :

1Even if all tactics are technically typed, we borrow the name typed tactics in opposition to unit tactic
from the Mtac2 Coq library [4].

7

Function name Existing version General version

Goal.enter (Goal.t -> unit tactic) -> unit tactic (Goal.t -> 'a tactic) -> 'a tactic

tclTHEN unit tactic -> 'a tactic -> 'a tactic 'a tactic -> 'a tactic -> 'a tactic

tclINDEPENDENT unit tactic -> unit tactic 'a tactic -> 'a tactic

Figure 6: Examples of required functions

1 val trace_goal_enter : (Goal.t -> trace tactic) -> trace tactic
2 val tclTraceThen : trace tactic -> trace tactic -> trace tactic
3 val tclTraceIndependent : trace tactic -> trace tactic

However, a more general interface could be created under some constraints. Indeed, with
the example of tclTHEN (see figure 6) that will apply two tactics successively, to be able to
define a new version with a given type it is needed to know how to merge the outputs of the
two tactics. I noticed that in a more general approach, the vast majority of the tactics defined
in the modules Proofview and Tacticals could be generalized to any type x under two
constraints: the type can be merged, which is represented by a function of type x -> x -> x ,
and the existence of an empty element of type x .

An implementation has been made with a functor, a module parametrized by another
module. The signature of the module that a type needs to implement to make generalized
tactics is the following:

1 module type Mergeable = sig
2 type elt
3 val empty : elt
4 val merge : elt -> elt -> elt
5 end

With this interface, it is possible to define almost all the generalized versions of functions
in the modules Proofview and Tacticals (see the full implementation in annex A). The
complete interface has been used both in the algorithms described in sections 3 and 4.

3 Automation control
The first axis of research to improve the automation is to have more control on the proof

search flow. Indeed, before this internship, the tactics used for the automation were auto and
eauto . These Coq tactics (whose theory is more described in 3.1) work by searching a proof
of the current goal with the help of some statements that had been proved previously (e.g
lemmas, theorems, . . .) which are named hints. Moreover, in addition eauto is able to solve
goals with ∃ statements whereas auto cannot. Nevertheless, in the current implementation
of auto and eauto , it is not possible to specify forbidden hints and/or hints that must be
used in the final proof. A first attempt to implement such a control tool is described in 3.2,
and a huge improvement made is described in 3.3.

3.1 Prolog and auto

Since auto and eauto are very similar, only auto will be explained here in details.

8

3.1.1 Prolog

To understand auto ’s operation, it is important to know how Prolog works. Prolog is a
logic programming language based on first-order logic used to solve problems involving objects
and relationships (see the section 1 of [5]). It contains a system of rules and facts of the form
Head :- Body. that can be read as "if Body is true then Head is true". In this case, the first
symbol in Head is called the head symbol of the rule, and more generally the head symbol of
a formula is the first symbol appearing. A rule of the form Head :- true. can be written
Head. and is called a fact. It is also possible to query the engine: for example, if we write
?- animal(tom). with the following rules and facts :

1 cat(tom). % There is a cat Tom.
2 animal(X) :- cat(X). % For all X, if X is a cat then X is an animal.

then the output would be Yes , meaning that there is an animal Tom. With the same set
of rules, the query ?- animal(jerry). would return No. as there is no way to prove that
this statement is true with only these two rules. Moreover, the head symbol of the first rule
is cat, and the one of the second rule is animal.

Let’s build the proof search tree of another example to see the complete flow:

1 mother_child(alice, david). % (1)
2 father_child(charlie, david). % (2)
3 mother_child(alice, bob). % (3)
4

5 parent_child(X, Y) :- father_child(X, Y). % (4)
6 parent_child(X, Y) :- mother_child(X, Y). % (5)
7 child_parent(X, Y) :- parent_child(Y, X). % (6)

The proof search tree corresponding to the query ?- child_parent(bob, alice). is
visible on the figure 7. The blue edges indicate the rules applied with success, whereas the red
edges indicate the rules tried but that cannot be applied or leading to an incomplete proof.
The nodes corresponds to the current goal to prove to complete the proof. This figure shows
that the query will return Yes. , and the rules applied to find the conclusion are (6), (5)
and (3). Notice that all rules are not tried at each step of the proof: only the rules with the
same head symbol as the current goal are tried. This execution flow is generalizable to any
proof search in Prolog [5].

child_parent(bob, alice)

parent_child(alice, bob)

father_child(alice, bob)

Fail

mother_child(alice, bob)

Fail Success

(6)

(4)

(2)

(5)

(1) (3)

Figure 7: Proof search tree of the Prolog query ?- child_parent(bob, alice).

3.1.2 auto

The Coq tactic auto works on the exact same principle. In this context, a rule is
called a hint, and a set of hints is called a hint database [2]. Moreover, we define the

9

trace of a proof search as the ordered list of tuples containing the tried hints whose par-
ent goal leads to a complete proof, and booleans indicating for each tried hint if it is
used for the final proof or not. In the example of the figure 7, the trace would be :
[(6, true); (4, false); (5, true); (1, false); (3, true)] . In the OCaml im-
plementation done during this internship, more informations are stored in these tuples to
make control easier (see the annex B). Furthermore, it is possible to print this trace in Coq
with the standard auto and eauto by adding the keyword debug before these tactics.

The order in which the hints are tried at each step is always the same. First, OCaml
tactic corresponding to the Coq tactic assumption is tried: it checks for every hypothesis
if it is equal to the current goal, and ends the proof in this case. This means that the
goal can be written as P =⇒ P for a proposition P , which is a tautology. Secondly, the
OCaml tactic corresponding to the Coq tactic intro is tried: it checks if the current goal
has ∀-quantifiers, and introduces a new variable if it is the case, which allows to reduce the
number of quantifiers. Then, if nothing above worked, all the hints taken from the local
hint database and the hint databases given by the user are tried one after the other, then a
recursive call is done on the new goal. To avoid infinite recursions, a maximum depth is set,
and the current branch of the proof search fails directly if this depth is reached2. The local
hint database is a hint database that, unlike the other ones defined before the beginning of
the proof search, is built during the search from the current hypothesis and from the lemmas
given by the user for the proof. To summarize, the order in which the hints are tried for
the call auto using lemma1, lemma2 with database1, database2. is the following : the
assumption , intro , the hints built from the hypothesis, lemma1 and lemma2, then the hints
contained in database1 and database2. As several proofs can theoretically be found during
the search, the search will end directly after founding the first one.

3.2 Control at the end of the proof search (contribution)
The first idea implemented in this internship was to add hints that must be used during

the proof search as a simple control of the proof found during the search. This idea is quite
simple: retrieve the trace, keep only the hints that are part of the complete proof, then verify
for each indicated must-use hint if it is present in this list, and throw an error if not. This has
been added to the automation function of the coq-waterproof library called waterprove, in
an OCaml tactic named wp_auto (see the annex C for more details).

Here is a possible application: the users are able to use Ltac2 notations in their proofs
that will call Coq tactics, which will call OCaml tactics. They can write by example
We conclude that <current goal>. to try to solve the current goal with wateprove. How-
ever, this might be insufficient in some cases, and the user should give a lemma needed to prove
the goal: it is possible to do so with the notation By lemma, we conclude that <current goal>. .
Nevertheless, it is not checked in Coq’s auto that the given lemma is indeed used or not,
but this is possible to do so with our tactic, as shown in the figure 8.

On the figure 8, the line 1 declares the goal to prove, here ∀n ∈ N, n = n, and the lines 2
and 6 are respectively the beginning and the end of the proof. The line 3 introduces a new
variable n ∈ N, the goal to prove after this line is n = n with n fixed in the hypothesis. The
line 5 shows that wp_auto , called by the notation We conclude that <current goal>. ,
is able to prove this goal. The line 4 is the one interesting here: with a call to wp_auto , a
check occurres at the end on the trace returned by the proof search: here the complete trace

2This limit is set at 5 by default with auto .

10

1 Goal forall n: nat, n = n.
2 Proof.
3 intros n.
4 Fail By f_equal we conclude that (n = n).
5 We conclude that (n = n).
6 Qed.

Figure 8: Example of a proof rejection because of an unused lemma

is [(assumption, false); (intro; false); (@eq_refl, true)], which does not contain
the lemma f_equal. Hence, the proof is rejected and an error is thrown, that’s why the Fail
at the beginning of the line succeeds3.

The implementation of wp_auto has been made with mutable global variables that store
and complete the trace during the proof search, which seems to be the easiest way of doing this.
However, because the order in which the arguments of a function application are evaluated
is not specified4, the update of the variables occurred after the search and the checking. A
non-sustainable solution was found, and was replaced with the improvement of the control, as
described in 3.3.

3.3 Control during the proof search (contribution)
The solution provided in 3.2 does work, but is not satisfactory: it is possible to imagine

a property admitting two distinct proofs with distincts arguments. The figure 9 shows one
such example for the property ∀n ∈ N, n+1 = n+1 (with S n meaning "the successor of n",
namely n+ 1).

1 Goal forall n: nat, S n = S n.
2 Proof.
3 intros n.
4 apply eq_refl.
5 Qed.

1 Goal forall n: nat, S n = S n.
2 Proof.
3 intros n.
4 apply f_equal.
5 apply eq_refl.
6 Qed.

Figure 9: Example of two distinct proofs for a same property

The right proof use the property f_equal and not the left one: as the left proof is the "sim-
plest" one, in the sense that the left proof will be found before the right proof during the proof
search by auto / wp_auto . Thus, writing By f_equal we conclude that (S n = S n).
will be rejected with the current version of wp_auto because f_equal is not used in the proof.
Therefore, if a user indicates f_equal as a lemma, the proof will be rejected but it does not
seems right to do so : as it exists a proof using this lemma, wp_auto should return a proof
containing f_equal.

Hence there should be a new constraint on wp_auto : instead of checking the first proof
found, the tactic should return the first proof found such that every wanted hint is used. To

3In Coq, Fail succeeds if an error is thrown during the execution of the line, and returns an error if not.
4https://v2.ocaml.org/manual/expr.html#sss:expr-functions-application

11

https://v2.ocaml.org/manual/expr.html#sss:expr-functions-application

achieve this, it is needed to transfer informations between tactics: continuing the same method
as in 3.2 would be too complex to maintain, that’s why the solution developed in 2.2.3 was
necessary. The idea here is to make the tactics return the trace corresponding to the subtree
to which they are the root. Tactics that fail only return an error containing a trace with only
themselves, and the ones that succeed merge all traces retrieved from tactics applied after
(that are lower in the proof search tree) then return the complete trace of the branch.

S n = S n

n = n

Success

Fail

Fail
Success

Fail

Fail

f_equal

eq_refl

intro

assumption

eq_refl

intro

assumption

1 Failed attempt: [
2 (false, assumption);
3 (false, intro);
4 (true, eq_refl)
5]
6

7 Final trace: [
8 (false, assumption);
9 (false, intro);

10 (false, eq_refl);
11 (true, f_equal);
12 (false, assumption);
13 (false, intro);
14 (true, eq_refl)
15]

Figure 10: Shorten proof search tree and proof search trace for the goal S n = S n requiring
the use of eq_refl and f_equal

On the figure 10, the proof search tree and the proof search trace for the goal S n = S n
show that a first proof has been found, containing only eq_refl. Then, since eq_refl and
f_equal are required to be used, the proof is considered as a success but is invalided, so the
proof search continues and a new proof containing both required hints is found, which is the
wanted behavior. The exact same process has been done with wp_eauto , which is to eauto
what wp_auto is to auto . This allowed to change the previous version of waterprove that
used auto and eauto with a new one that uses wp_auto and wp_eauto .

The current version of the implementation is working but some improvements can be
done. The most important one is the fact that the check that every must-use lemma is
present occurres at the highest depth in the proof search tree. In the case of the figure 10,
the checks are done in the edges coming out of the S n = S n node. The figure 11 shows
an example where this is a problem: as the check is done at the depth 1, if the proof found
containing lemma_A and lemma_B is rejected after the check, the dashed branches will never
be tried, including the one that would succeed with lemma_C. The solution is not that simple
to implement: making the check at the leafs is not possible because one goal can generate
several subgoals and a must-use hint is possibly used in only one of these subgoals. A possible
solution would be to flatten the proof search tree to do the check only in the last subgoal.

Moreover, the current implementation offers a framework that can be easily extended: it is
easy to add other operations during the proof searches. For example, it is possible to give each
hint a weight corresponding to its complexity, then to find all the possible proofs and return
a proof with the minimal weight if it exists, corresponding to the "simplest" proofs among all
the found ones.

12

Goal

. . .

New goal

Success

Fail

Success

Fail

Fail

Fail

lemma_A

lemma_C

lemma_B

Figure 11: Example of a proof search failing where it should not

4 Automated rewriting
The second axis of research to improve the automation is to improve its strength to make

the proofs with Waterproof look like pen-and-paper proofs as much as possible. Two options
have been considered: first the resolution of arithmetic equalities and inequalities, and secondly
using rewriting based on current hypotheses to the proof search. After reading the Coq manual
[2] and Coq’s source code [3], it appeared that there was not enough time during this internship
to follow this path. Consequently, it was decided to focus on the use of rewrites during the
proof search. This idea is based on the automatic use of current hypothesis to generate rewrite
hints (see 4.2) for the Coq tactic autorewrite (see 4.1).

4.1 Rewriting and autorewrite

rewrite is one of the most fundamental tactics in Coq. It allows to replace subterms in
a given expression with other subterms that have been proven to be equal [2]. For example,
if the current goal is f x = f z , and the hypothesis H states that x = y , then the tactic
rewrite H. will transform the goal into f y = f z . Variables can be unified if the used
hypothesis contains ∀-quantifiers. With the same idea defined in 3.1.2, let a rewrite hint be a
registered term typed as an equality, and a rewrite hint database a set of rewrite hints [2]. It
is to be noted that hint databases and rewrite hint databases are completely distincts: auto
will never use a rewrite hint. these rewrite hint databases can be used by autorewrite
that will apply rewritings based on the hints contained in the given rewrite hint databases.
Each rewrite hint will be applied until it fails to be used as rewriting. It is possible to give
autorewrite a Coq tactic that will be applied between each rewriting step. It can be useful
to use this possibility with auto or eauto for example to try to resolve the goals with
automated rewritings that are not declared in auto ’s hint databases.

4.2 Automated use of hypotheses (contribution)
Rewriting hints are really useful to solve a goal, but you have to declare them before using

autorewrite to be able to use them. Indeed, as explained in 4.1, auto (and wp_auto as
well) cannot use rewrite hints or rewrites based on equalities in the hypotheses. The figure
12 shows that the goal ∀x ∈ R, x = 0 =⇒ sin(x) = 0 cannot be solved directly with auto
but works with a rewriting step beforehand: the hypothesis H (which corresponds to x = 0)
cannot prove directly the goal as the goal sin x = 0 is not syntactically equal to x = 0
nor to sin_0 (which corresponds to sin 0 = 0).

13

1 Goal forall x: R, x = 0 -> sin x = 0.
2 Proof.
3 intros x H.
4 Fail progress (auto using sin_0).
5 rewrite H; auto using sin_0.
6 Qed.

Figure 12: Example of a proof where auto fails but rewrite succeeds

Thus, the idea implemented in this internship is to use the current hypotheses as rewrite
hints during the proof search, then to use autorewrite with wp_auto using the rewrite hint
database composed of hints made by the hypotheses. To make this work, it was needed to
retrieve the current hypotheses, then change the autorewrite implementation in Coq core
to be able to use locally defined rewrite hints.

1 Goal forall A: Set, forall x y z: A, forall f: A -> A, x = y -> f y = f z
-> f x = f z.↪→

2 Proof.
3 intros A x y z f H1 H2.
4 Fail progress auto.
5 waterprove.
6 Qed.

Figure 13: Example of a proof where auto fails but waterprove succeeds

The figure 13 shows that our tactic waterprove works in a case where auto does not
because of the automatic add of rewrite hints and the apply of a custom autorewrite .
Here, we have to show that, given A a set, x, y, z ∈ A and f : A −→ A such that x = y (H1)
and f(y) = f(z) (H2), then f(x) = f(z): it is not possible to directly prove this only with
auto because neither H1 (x = y) nor H2 (f x = f z) are syntactically equal to the goal
(f y = f z). However, adding a rewriting step based on H1 before doing a proof search
returns a complete proof as x is substituted to y in the goal.

A possible way of improving the current version of wp_autorewrite , the tactic that is to
autorewrite what wp_auto is to auto , is to add the control of used hints as in 3.3 for the
same purpose: controlling that each must-use hint (that can be a hypothesis) is used either
during the proof search with wp_auto , or during the rewriting steps with wp_autorewrite .
This is currently not implemented, but it is doable by using the trace returned by the wp_auto
tactic using the typed tactics interface presented in 2.2.3.

5 Optimization
During the implementation of the algorithms shown in 3, the existing hint databases used

in coq-waterproof have been slightly modified to adapt to the new automation system. This
lead to a great increase in the number of tried hints: for some proof searches, the number
of tried hints skyrocketed to hundreds of thousands to millions, which made the automation
system unusable for the users as the proof search time was too long to be used. With other

14

minor corrections, the number of tried hints drastically decreased, but the effects are still
visible.

5.1 Internal proof state
In the Coq core, the goals (see 2.1) are represented by the type Proofview.Goal.t

(available in the file engine/proofview.ml in [3]). This type stores several elements where the
important ones are: the current environment, which is the merge of the local environment and
the global context, and the conclusion. That means that to check if progress has been made,
only these fields are relevant, which can be seen in the definition of Proofview.tclProgress
(in the same file) as only these fields are used.

5.2 Branch skipping in the proof search tree (contribution)
The principle behind this optimization is to skip branches leading to proof states al-

ready visited. Indeed, as described in 5.1, the environment and the conclusions are enough
to entirely determine the proof state. Thus, it is not necessary to continue to search
in a branch if the current state has already been visited. It is particularly useful for
hints that make the conclusions switch in a cycle. For example, the hint eq_sym of type
forall [A : Type] [x y : A], x = y -> y = x can be applied twice in a row on the
same conclusion that will return to the initial state.

x = y

y = x

x = y

Success

. . .

. . .

. . .
Fail

FailFail

Fail

eq_sym

eq_sym

lemma_A

intro

assumption
intro

assumption

x = y

Success

y = x

. . .

Skipped

Fail

Fail

Fail

Fail

lemma_A

eq_sym

eq_sym

intro

assumptionintro

assumption

Figure 14: Comparaison of proof search tree with and without the optimization

The figure 14 shows that for a proof search on the goal x = y (with x and y any
variables), it is possible to apply twice in a row the lemma eq_sym that uses the commutativity
of the equality to make the goal become y = x . Hence, this hint can be applied an infinite
amount of times, but as there is a maximal search depth (see 3.1.2), in this case set at 3,
the application of this hint is limited and thus lemma_A solves the goal at depth 3, which
is visible on the left proof search tree. When the optimization is turned on, the algorithm
detects that the environment and the conclusion have not changed: consequently, it is possible
to find a strictly simpler proof (in the sense of the number of hints applied), and so the branch
is skipped, as indicated on the right proof search tree. A complete example showing the
improvement is available in annex D.

To provide a more precise evaluation of the impact of the optimization, a comparison
was conducted on the total number of hints attempted during the compilation process of
the coq-waterproof library. Without the optimization, a total of 1,261,341 hints were
tried during compilation. However, with the optimization implemented, this number sig-
nificantly decreased to 668,513. Upon closer analysis, it was discovered that a specific test

15

file, tests/tactics/ItHolds.v, was responsible for a substantial increase in the number of
attempted hints. Upon disabling the compilation of this file, the results showed a decrease
in the total number of tried hints to 207,909 without the optimization, and 154,318 with the
optimization. This shows that the optimization reduce significantly the number of hints tried,
and so the compilation time. This reduction is even greater in some edge cases where more
than half of the proof searches is skipped with this optimization.

6 Conclusion
Several improvements have been made to the automation system of coq-waterproof dur-

ing this internship. Notably, the control of automation has been enhanced, allowing for better
management of hints to be used in the final proof. Additionally, the automation system’s
robustness has been strengthened by automatically adding rewriting steps based on current
hypotheses. Furthermore, an optimization has been introduced during proof searches, result-
ing in a significant reduction in the number of attempted hints required. These improvements
required the development of a comprehensive interface that expands the tactic monad in Coq’s
OCaml API.

Moving forward, certain aspects raised in this report require further attention. Specifically,
there is a need to create a restricted version of wp_autorewrite to complete the improvements
initiated in 3.3. Additionally, the algorithm employed for proof searches should be thoroughly
reconstructed to prevent unnecessary branch skips arising from the control applied during the
search process.

Taking a broader perspective, future research and development on coq-waterproof should
prioritize enhancing its practicality for both students and teachers. This goal has been the
driving force behind this internship and has been shared by other individuals involved in the
project throughout the year.

16

References
[1] J. Wemmenhove, T. Beurskens, S. McCarren, J. Moraal, D. Tuin, and J. Portegies, Wa-

terproof: Educational software for learning how to write mathematical proofs, 2022. arXiv:
2211.13513 [math.HO].

[2] Coq Team, Coq’s reference manual. [Online]. Available: https : / / coq . inria . fr /
distrib/current/refman/.

[3] Coq Team, Coq’s source code. [Online]. Available: https://github.com/coq/coq.
[4] J.-O. Kaiser, B. Ziliani, R. Krebbers, Y. Régis-Gianas, and D. Dreyer, “Mtac2: Typed

tactics for backward reasoning in coq,” Proc. ACM Program. Lang., vol. 2, no. ICFP, Jul.
2018. doi: 10.1145/3236773. [Online]. Available: https://doi.org/10.1145/3236773.

[5] W. F. Clocksin and C. S. Mellish, Programming in Prolog. Springer Berlin Heidelberg,
1984. doi: 10.1007/978-3-642-96661-3. [Online]. Available: https://doi.org/10.
1007/978-3-642-96661-3.

[6] M. Knobelsdorf, C. Frede, S. Böhne, and C. Kreitz, “Theorem provers as a learning
tool in theory of computation,” in Proceedings of the 2017 ACM Conference on Interna-
tional Computing Education Research, ser. ICER ’17, Tacoma, Washington, USA: Asso-
ciation for Computing Machinery, 2017, pp. 83–92, isbn: 9781450349680. doi: 10.1145/
3105726.3106184. [Online]. Available: https://doi.org/10.1145/3105726.3106184.

[7] A. Thoma and P. Iannone, “Learning about proof with the theorem prover LEAN: The
abundant numbers task,” International Journal of Research in Undergraduate Mathemat-
ics Education, vol. 8, no. 1, pp. 64–93, Jul. 2021. doi: 10.1007/s40753-021-00140-1.
[Online]. Available: https://doi.org/10.1007/s40753-021-00140-1.

17

https://arxiv.org/abs/2211.13513
https://coq.inria.fr/distrib/current/refman/
https://coq.inria.fr/distrib/current/refman/
https://github.com/coq/coq
https://doi.org/10.1145/3236773
https://doi.org/10.1145/3236773
https://doi.org/10.1007/978-3-642-96661-3
https://doi.org/10.1007/978-3-642-96661-3
https://doi.org/10.1007/978-3-642-96661-3
https://doi.org/10.1145/3105726.3106184
https://doi.org/10.1145/3105726.3106184
https://doi.org/10.1145/3105726.3106184
https://doi.org/10.1007/s40753-021-00140-1
https://doi.org/10.1007/s40753-021-00140-1

Annexes

A – Typed tactics functor

1 (** Generic mergeable type *)
2 module type Mergeable = sig
3

4 (** Type of the elements *)
5 type elt
6

7 (** Empty value *)
8 val empty : elt
9

10 (** How to merge two elements *)
11 val merge : elt -> elt -> elt
12

13 end
14

15 (** Generalization of tactics defined in coq-core for {! Mergeable}-typed tactics *)
16 module TypedTactics: functor (M: Mergeable) -> sig
17

18 (** Merge of tactics' returned elements *)
19 val typedThen :
20 M.elt Proofview.tactic ->
21 M.elt Proofview.tactic ->
22 M.elt Proofview.tactic
23

24 (** Same as {! typedThen} with a list of tactics *)
25 val typedLongThen :
26 M.elt Proofview.tactic list -> M.elt Proofview.tactic
27

28 (** Generalization of {! Proofview.Goal.enter} *)
29 val typedGoalEnter :
30 (Proofview.Goal.t -> M.elt Proofview.tactic) ->
31 M.elt Proofview.tactic
32

33 (** Generalization of {! Proofview.tclINDEPENDENT} *)
34 val typedIndependent :
35 M.elt Proofview.tactic -> M.elt Proofview.tactic
36

37 end = functor (M: Mergeable) -> struct
38

39 let typedThen (tactic1: M.elt tactic) (tactic2: M.elt tactic): M.elt tactic =
40 tactic1 >>= fun elt1 ->
41 tactic2 >>= fun elt2 ->
42 tclUNIT @@ M.merge elt1 elt2
43

44 let typedLongThen (tactics: M.elt tactic list): M.elt tactic =
45 List.fold_left typedThen (tclUNIT M.empty) tactics
46

47 let typedGoalEnter (f: Goal.t -> M.elt tactic): M.elt tactic =
48 Goal.goals >>= fun goals ->
49 let tactics = List.map (fun goal_tactic -> goal_tactic >>= f) goals in
50 List.fold_left (fun acc tac -> typedThen acc tac) (tclUNIT M.empty) tactics
51

52 let typedIndependent (tactic: M.elt tactic): M.elt tactic =
53 tclINDEPENDENTL tactic >>= fun elts -> tclUNIT @@ List.fold_left M.merge M.empty elts
54

55 end

18

This is the full implementation of the typed tactics functor. It is possible to extend it with
even more generalization of Coq’s OCaml API functions, but only these ones were useful for
the algorithms’ implementation. This piece of code can be found on the git repository in the
file src/proofutils.ml.

The symbol >>= in the context of monads is a convention to denote the bind function.
Thus, the two following lines are equivalent:

1 (* Version with the >>= notation *)
2 wrapped >>= fun value -> result
3

4 (* Version without the notation *)
5 bind wrapped (fun value -> result)

B – OCaml trace implementation

1 (**
2 Trace atome type
3

4 Can be read as (is_success, depth, hint_name, hint_db_source)
5 *)
6 type trace_atom = bool * int * Pp.t * Pp.t
7

8 (**
9 Trace type

10 *)
11 type trace = {
12 log: bool; (** Are tried hints printed ? *)
13 current_depth: int; (** The current depth of the search *)
14 trace: trace_atom list (** The full trace of tried hints *)
15 }

This is the types corresponding to the trace defined in 3.1.2. The module Pp of Coq’s
OCaml API defines pretty printing functions, and the type Pp.t corresponds to an expression
that can be printed. It can be considered as an improved version of string .

C – Description of wp_auto

The description of wp_auto made in 3.2 has been simplified not to flood the explanations
with useless implementation details. Indeed, in the implementation wp_auto only returns the
trace of the proof search but never fails: another tactic has been created for this: rwp_auto
(for restricted wp_auto). All these functions can be found in the file src/wp_auto.ml of the
repository. Moreover, We conclude that <current goal>. does not call directly wp_auto
nor rwp_auto , but calls waterprove or rwaterprove defined in src/waterprove.ml which
will call wp_auto / rwp_auto and wp_eauto / rwp_eauto .

D – Example of successful optimization

19

1 Require Import Ltac2.Ltac2.
2

3 Require Import Waterproof.Waterproof.
4 Require Import Waterproof.Waterprove.
5 Require Import Waterproof.Automation.
6

7 Waterproof Clear Automation.
8

9 Local Parameter A: Type.
10 Local Parameter a b: A.
11 Local Parameter a_eq_b: a = b.
12

13 Waterproof Enable Automation Core.
14

15 Local Hint Resolve a_eq_b : core.
16

17 Goal b = a.
18 Proof.
19 pose eq_sym as eq_sym.
20 (* Std.auto Std.Debug (Some 5) [] None. *)
21 (* waterprove 5 false [] Main. *)
22 Qed.

• The lines 1-5 are the necessary imports of coq-waterproof.

• The lines 7-13 correspond to the definition of parameters that will be used in the proof,
and the lemma a_eq_b that have to be placed in a hint database different than the
local one to be tried in the correct order (a_eq_b should be tried after eq_sym).

• The lines 17-22 correspond to the proof where the proof search will be tested.

To try the proof search with Coq’s auto, the line 20 should be uncommented, and to try
the proof search with the optimization presented in 5, it should be the line 21.

The list of applied hints by the proof search of line 20 is:
[eq_sym, eq_sym, eq_sym, eq_sym, eq_sym, a_eq_b]
The line 20 will display the follow output upon execution5:

1 (* debug auto: *)
2 * assumption. (*fail*)
3 * intro. (*fail*)
4 * simple apply eq_sym. (*success*)
5 ** assumption. (*fail*)
6 ** intro. (*fail*)
7 ** simple apply eq_sym. (*success*)
8 *** assumption. (*fail*)
9 *** intro. (*fail*)

10 *** simple apply eq_sym. (*success*)
11 **** assumption. (*fail*)

5The a_eq_b hint is hidden behind trivial in the output.

20

12 **** intro. (*fail*)
13 **** simple apply eq_sym. (*success*)
14 ***** assumption. (*fail*)
15 ***** intro. (*fail*)
16 ***** simple apply eq_sym. (*success*)
17 ***** exact a_eq_b (in core). (*fail*)
18 ***** simple apply @eq_refl (in core). (*fail*)
19 ***** simple apply f_equal_nat (in core). (*fail*)
20 ***** simple apply eq_sym ; trivial (in core). (*success*)

The list of applied hints by the proof search of line 21 is: [eq_sym, a_eq_b] . The line
21 will not display anything without enabling an option before the compilation of the library.
Here is the output with this option:

1 (* info wp_auto: *)
2 Trace:
3 x assumption in ().
4 x intro in ().
5 o eq_sym in ().
6 x assumption in ().
7 x intro in ().
8 x eq_sym in ().
9 o a_eq_b in (core).

This shows that the hint eq_sym have been applied only once with the optimization, but
5 times without, which demonstrates that the the optimization does work in some cases.

21

	Introduction
	Context
	Waterproof
	Internship
	Tools used

	Coq proofs
	Proof state
	Tactics
	General description
	OCaml's tactic monad
	Typed tactics (contribution)

	Automation control
	Prolog and auto
	Prolog
	auto

	Control at the end of the proof search (contribution)
	Control during the proof search (contribution)

	Automated rewriting
	Rewriting and autorewrite
	Automated use of hypotheses (contribution)

	Optimization
	Internal proof state
	Branch skipping in the proof search tree (contribution)

	Conclusion
	References
	Annexes
	Typed tactics functor
	OCaml trace implementation
	Description of wp_auto
	Example of successful optimization

