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General context

Vélus [BBP19; Bou+17; Bou+21; BPP23] is a verified compiler from a synchronous dataflow program-
ming language based on LusTRE [Hal+91] and SCADE, to CLIGHT, a large subset of the C99
programming language. It specifies the dynamic semantics and type systems of the input language,
and relies on CompCert [Ler09], a verified compiler, for the specification of the output language and
the compilation from CLIGHT to assembly code. It is implemented in the Rocq Prover [ICc24], a proof
assistant in which the compiler and the proof of its correctness are written. Each function is proved
correct with regards to the formal models of the input language, of CLIGHT, and of all the intermediate
languages.

This internship follows the initial work done by Timothy Bourke, Lélio Brun, Pierre-Evariste Dagand,
Xavier Leroy, Marc Pouzet, and Lionel Rieg [Bou+17], and the theses of Lélio Brun [Bru20], which set
up the basis of Vélus with modular reset, Basile Pesin [Pes23], which extends the input language with
new operators and state machines, and Paul Jeanmaire [Jea24], which adds a denotational semantics
to the compiler.

Research problem

This internship studies node inlining, an optimization similar to function inlining in imperative
languages. The idea is to replace a call to another node with its body to avoid function calls and data
manipulation that may increase the execution time of the generated imperative code. This would add a
phase to the compilation flow of Vélus, which will require to implement an algorithm of node inlining
in Rocq, and more importantely to prove that this phase preserves all the properties (synctactic, typing,
semantic, ...) required to maintain the complete proof of correctness of the compiler.

Adding inlining to a verified compiler has already been done several times, notably in CompCert' and
in PureCake [KKM24]. However, this problem is new for synchronous dataflow languages, in particular
due to the synchronous semantics of the language which is not a from step-based imperative semantics,
and the modular reset that must be distributed to inlined equations. The standard compilation scheme
[Bie+08] implemented in the Vélus compiler transforms each node instance into a single function call,
and thus inlining is required for certain feedback patterns (node instances where some outputs only
depends on some inputs).

Another question is the inlining heuristic, i.e., which nodes should be inlined by the compiler. This
would be more beneficial than using exclusively the one of CompCert because a typical LusTRe/SCADE
program contains many small nodes.

Your contribution

During my internship, I implemented node inlining in Rocq and included it in the compilation flow. I
proved that syntactic and typing properties are preserved by this new compilation phase. No real diffi-
culty was encountered during the proofs, but they gave me a better understanding of the full compiler.

thttps://compcert.org/doc/html/compcert.backend.Inlining.html
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However, existing proof schemes were not sufficient to directly ensure the required properties: node
inlining is the only compilation phase where the compilation of a node depends on the definition of
other nodes, and not just their input/output interfaces.

The proof of correctness, ensuring the preservation of the semantics, provided the major problem of the
internship. It took several weeks to understand the issue in detail, to clearly define the central property
and prove it. The result is a complete proof of an intermediate lemma which states an interesting and
crucial semantics property for node inlining. The full proof of correctness was not finished because of
a lack of time.

Arguments supporting its validity

All the proofs have been written in Rocq, ensuring the logical consistency of the stated properties.
Some powerful tools of logic had to be used, in particular the axiom of choice, but all of them were
already in use in the compiler so no new axiom or tool had to be introduced in the project. Moreover,
as the compilation phase that has been introduced is located in the middle of the full compilation flow,
the only assumption is that the result of the previous phase verifies the required properties.

Summary and future work

During this internship, I implemented node inlining in Vélus, and proved many of the properties
required to ensure compiler correctness. Unexpected and interesting properties about the modular
reset have been proved, which are valuable independently of our focus on node inlining. Future work
on Vélus should complete the proof of correctness of this new compilation pass, and improve the
dependency analysis to be able to compile valid programs that are currently rejected.

Furthermore, the compiler is increasingly difficult to work with because of its size. Simplifying the
backend is necessary to be able to add more features to Vélus in the future. In particular, functional
arrays are the next big addition planned in Vélus, and will be the focus of a future PhD. This would
need changes in every part of the Vélus architecture, so it may be beneficial to make backend changes
at the same time.

The official repository of Vélus is available on the GitLab instance of the Inria at https://gitlab.inria.fr/
velus/velus, and on its GitHub mirror at https://github.com/INRIA/velus. The work done during my
internship is currently only available on the branch balthazar-intership on GitLab.

To simplify the references to the source files of Vélus, only the name of the file will be given: the full
path from the repository source is available in Appendix A.
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1 node nand(a, b: bool)
2 returns (z: bool); a| FIFIT|T
3 var c: bool; bfF|T|F|T
4 let ¢ = a and b; c||F|F|F|T
5 Zz = not c; lTlTlT!E
6 tel

Figure 1: Example of a LUSTRE node (left) and its chronogram (right)
1 — Context

1.1 — LusTRE/SCADE

Lustre [Hal+91] is a formally defined synchronous dataflow language for programming reactive
systems. Introduced in the 1980s, it progressed to pratical and industrial use through SCADE 3, an
industrial environment developed by Ansys. The development continued with SCADE 6 [CPP17],
another version of the environment with new features inspired by Lucid Synchrone [CP99]. It is now
used for critical control software in aircraft, helicopters and nuclear power plants thanks to its DO-178B
certification.

A LUSTRE program is a series of node, type and external function declarations. A type in LUSTRE can
be either an int, float, or C-style enumeration. For example, bool is defined in LUSTRE as:

1 type bool = true | false

Moreover, external function are built-in functions, like sinus and cosinus. Finally, nodes are sets of
equations, that will be compiled into imperative functions. Figure 1 shows an example of a node, where
nand is the name of the node, a and b are input variables, z is an output variable, and c a local variable.
The lines between let and tel are the equations, and their order does not matter: swapping them does
not change the result.

Execution traces of synchronous dataflow programs can be represented by infinite streams in tables
called chronograms. Indeed, all variables are updated simulaneously, with respect to the list of equa-
tions of the node, it thus makes sense to represent them in a grid where each column is an instant.

This representation as streams is at the core of LUSTRE’s semantics, and facilitates the definition of
some operations that will be defined in Section 1.3.2. Formally, streams are defined coinductively as
(v) - vs for the concatenation of the value v with the stream vs.

1.2 — Vélus

Vélus is a verified compiler written in Rocq, from a synchronous dataflow language, inspired by LUSTRE
and SCADE, to CLIGHT, a large subset of C99. The input language is also called LUSTRE even though it
is not exactly the one described formally in [JRH20]: it is a superset of LUsTRE and a subset of SCADE 6.
This compiler is implemented as a composition of functions that rewrites the program into successive
intermediate languages, each with its own semantic model. Each function is then proved correct with
respect to the semantics of those languages.

The (almost) complete architecture of Vélus can be seen in Figure 2. The general layout was described
in [BBP19], after an adaptation of the compilation scheme presented in [Bie+08]. The “node inlining”
pass will be described later in this document, and has been fully implemented during this internship.

LUSTRE contains many operators and constructions, but only the ones used in this internship will be
described here. You can find the full syntax of LUSTRE in Appendix B.
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Figure 2: Architecture of Vélus

1.3 — NLUSTRE

NLUSTRE is a intermediate language used in Vélus. It means “Normalised LUSTRE”, and is transcripted
from LUSTRE after some rewriting passes (see Figure 2). Its syntax is a restricted subset of LUSTRE and
the node inlining is a compilation pass in this language, which is why it will be described in detail in
the following paragraphs.

1.3.1 — Syntax
Here is the complete syntax of NLUSTRE expressions [Pes23]:
Simple expressions Control expressions
exs=c¢ ce:x=e
| C | merge z (C = ce)™
| © | case e of (C = ce)?t
| last Right hand-side
[oe rhs = ce
le®e | fargs")
| e when C(z)

The constants, enumeration values, variables, pattern matching, unary and binary operators are the
usual ones that can also be found in C. The last operator will be explained in detail in Section 1.3.3.
Finally, when and merge, respectively operators of sub-sampling and over-sampling, allow to modifiy
the “rhythm” of an expression, formally defined as a clock (see Section 1.3.2).

1.3.2 — Clocks
Vélus streams are sampled, meaning that some may be produced at a slower rate than others. Moreover,
they are synchronous: a stream with a slower rate will balance by adding a missing value, represented
by an absence denoted (). The clock of a stream xs is then a boolean stream defined as follows:
clock-of(() - vs) := F - clock-of(vs)

clock-of((v) - vs) := T - clock-of(vs)
The base clock of a node is defined as the clock whose value is T if and only if at least one of the inputs
is present. In particular, the base clock of the main node is the clock whose value is T at each instant.

In Figure 3, the variable y has clock “e on true(b)” and z has clock “e on false(b)” due to the
subsampling induced by the when operator. The operator merge then recompose the two streams to
define the variable t with clock e. More generally, sub-sampling a stream with respect to another clock
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1 node foo(x: int, b: bool)
2 returns (t: int);
3 wvar y: int :: . on true(b); bIlT|IT|FIF|T|FI|T|F|F
4 z: int :: . on false(b); xlt1l1213l4l5]|6 |7
5 let
yi(1]2 5 7
6 y = x when true(b);
7 z = (x * 2) when false(b); z 618 12 16 | 18
8 t = merge b tjj1(2)6|8]|5[12]|7|16] 18
9 (true => y) (false => x);
10 tel

Figure 3: Example trace of when and merge

makes a new stream based on the first one where a value is replaced by an absence when the other
stream is F. Merging two streams is the reverse operation: two streams where the present values do
not overlap can be merged regarding to a clock (take the value in the first stream if T, and the second
otherwise). A clock represents an abstraction of the presence/absence status of a stream, and can then
be defined inductively:

ck == o (Cbase) | ck on C(z) (Con), with x a variable and C an enumeration value

1.3.3 — Equations
Here is the syntax for equations in NLUSTRE:

Equations
eq == x = rhs (Def) | £ = reset ¢ fby e every z* (Fby)
| last x = ¢ every z* (Last) | 7 = (reset f every x*)(e™) (App)

Def equations are the most basic equations, and they are stateless. Fby, Last and App are stateful and
can be reset (see Section 1.3.4).

Fby equations use the fby binary operator, which can be defined as the concatenation of the first
value of the first stream with that of the second stream. Figure 4 shows an accumulator built with this
operator.

Last equations initialize shared variables. A shared variable is a variable from which it is possible to
retrieve the current value or its previous value through the last operator. To ensure that the result
is always defined, the “initial last” value must be given, through Last equations. In practice, all Last
equations could be expressed as Fby equations, and reciprocally, but it has been decided to keep both
to better optimize the generated code.

App equations are calls to another node, and are the most important type of equation for node inlining.
Figure 6 an example of such a call.

1 node acc(inc: int)

2 returns (prev: int; sum: int); inc ||1[2|3])4|5]6]7
3 let prev = 0 fby inc; prev|[O]1|2| 3[4 ]5](6
4 sum = @ fby (sum + inc); sum || 1|3]|6]| 1015|2128
5 tel

Figure 4: Simple accumulator in NLUSTRE
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1 node acc(inc: int, rst: bool)

2 returns (sum: int); inc || 1 2 2| 4
3 let rst || F T F|F
4 sum = reset (0 fby (sum + inc)) every rst; sum 0 11| 13
5 tel

Figure 5: Accumulator with reset in NLUSTRE

1.3.4 — Reset signals

The equations using last, fby operators, and node calls shown in Section 1.3.3 give the intuition that
an equation “stores” actively the current (and previous if needed) state of its variables. Thus, it may
be interesting in some cases to reset the equation to enforce the value of the variables as if it were
again the first instant of the equation. In NLUSTRE, the indication to reset is given to an equation
through reset signals, which are a list of boolean variables: if at least one of them evaluate to T, then
the equation is reset. For clarity, the syntactic (list of boolean variables) and the semantic (boolean
stream) representation of reset signals will be denoted by the same variables.

Figure 5 shows an example of a simple counter reset each time the variable rst is set to T (columns
highlighted in gray). Moreover, in LUSTRE, where reset signals with more complex expressions are
allowed, one can write an example as Figure 6. This shows the modular property of the reset, intro-
duced in [HPO0O] as local reset, since the additional rule can be added or removed without modifying
any other equation [BBP18]. This allows to easily reset expressions without passing a boolean stream
through intermediate node calls.

The semantics of reset can be formally defined through “masking”. The idea has been introduced in
[BBP19] and developed in [BPP23], where mask’,:, rs xs is defined formally in Figure 7.

In this definition, the boolean stream rs corresponds to the stream of the reset condition. An instance
of the value stream x s consists of the section of the stream between two T’s on the reset stream. The
instances are numbered: the instance k is located between the kth (included) and (k + 1)th (excluded)
occurences of T in the reset stream, or before the first occurence of T if n = 0.

1 node acc(inc: int) returns (sum: int);

2 let sum = @ fby (sum + inc); tel

3

4 node foo(in: int) returns (out: int); in "1 3ls5l2lol 2416
5 var (count: int);

6 let outfof1[afofz2]11]0]4
7 count = 0 fby (count + 1);

8 reset out = acc(in) every (count mod 3 = 0);

9 tel

Figure 6: Accumulator automatically reset in LUSTRE

mask}, (F - 7s)(v - zs) := (if k¥’ = k then v else ()) - mask}, rs zs
mask}, (T - rs)(v- zs) := (if K + 1 =k then v else ()) - mask},, rs zs
mask” := mask}

Figure 7: Definition of mask
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Figure 8 shows an example of the spliting of the value stream xs into instances cut by occurrences
of T in the reset stream rs. The resulting stream with reset is obtained after merging all the masked
streams. Figure 9 shows the sampling with masks for Figure 5.

XS 0112 (314|516 |7]8]|9].. inc 11315]|7]19]12]4
rs ([F|F|T|F|F|F|T|F[T|F]|.. rst FIF|T|F|F|T|F
mask?[ 0 | 1 mask® rst sum| 1 | 4
mask! 2|3[4]5 mask! rst sum 5 12]21
imask? 6|7 mask? rst sum| 216
mask® 819 .- sum 14a]5[12|21f2]6
Figure 8: Example of mask Figure 9: Sampling with masks for Figure 5

1.4 — Variable names

In Vélus, the variables defined in a source program can have any standard character in their name,
except “$”. Indeed, this character is reserved for the generation of new variables during compilation.
For example, during the last normalization phase (see Figure 2), all the generated variables are
prefixed by “last$”. This helps keep track of the source of the new variables throughout compilation.
Moreover, a variable is called atomic if it does not contain “$”, and is prefixed by a reserved keyword
otherwise. The list of such keywords can be found in Ident.v.

2 — Node inlining
From here, everything but definitions have been introduced, i.e., all the mentioned lemmas, and the function
lift_reset (see Section 3.3.3) have been added or proved during my internship.

2.1 — Description

Node inlining is the equivalent of inline expansion in languages with functions: it is a manual or
compiler optimization that replaces a node call with the body of the called node. In Vélus, two benefits
can be found in this optimization: as in other languages, it may reduce the worst-case execution time,
and it will increase the number of programs that can be compiled by Vélus.

Indeed, the scheduling pass (see Figure 2) orders all the equations in a node so that each only depends
on variables defined earlier. However, not all valid programs can be scheduled in this way, because all
the output of a node instance are assumed to depend on all the inputs, even when this is not the case
within the node definition.

In the left part of Figure 10, the variable z is used on the left and right sides of the same equation
(highlighted in red), leading to an error because this variable is used in its definition without a delay
(last or fby). However, the variable xi in node f is never used, so this program could be compiled
with node inlining. The right part of Figure 10 shows a semantically equivalent program after the new
pass. It is now well-scheduled. The algorithm to obtain this program will be described in Section 2.2.
The main goal of node inlining is to fix such cases (this example is very simple, see Appendix C for a
more interesting example with the same issues).

2.2 — Implementation

The code fragments are simplified, compared to the implementation in Rocq, to avoid having to explain
non-interesting parts. The real implementations can be found in the files mentionned in Appendix A.
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1 node f(wi, xi : int) 1 node g(x : int)
2 returns (wo, xo : int); 2 returns (y : int);
3 let wo =wi + 1; 3 wvar z : int;

4 X0 = wi * 4; 4 let

5 tel 5 wo' = wi' + 1;
6 6 x0' = wi' * 4;
7 node g(x : int) 7 wi' = X + 2;

8 returns (y : int); 8 Xxi' =2z + 3;

9 wvar z : int; 9 y = X0';

10 let (y, (z) = f(ix + 2, (z + 3)); 10z =wo';

11 tel 11 tel

Figure 10: Example of an ill-scheduled program before (left) and after (right) inlining

2.2.1 — Location

The first question was to choose where to place the new compilation pass. There are two possibilities:
in LUSTRE, between the compilation of switch blocks and local blocks to exploit the possibility of
defining local blocks in the syntax of LUSTRE; and in NLUSTRE before the expression inlining to use the
following optimization passes. I chose to put it in NLUSTRE because its much simpler syntax compared
to LUSTRE.

2.2.2 — Which equations to inline

In Vélus as in any other compiler that implements inlining, not all functions/nodes are inlined. Instead,
the user can specify by hand which must be inlined and/or a heuristic is used to select the ones that
should be inlined. For testing purposes, all the nodes were inlined during this internship, but this is
not efficient at all: big nodes must not be inlined as code duplication will drastically increase the size
of the generated C code.

What should be done in future work is to add a boolean for each node call in NLUSTRE indicating if
the node should be inlined or not. This would be computed by an external OCamL function which
would be called by Rocq during compilation. As every property has been proved regardless of the
equation being inlined or not, this does not have any impact on correctness. No such algorithm has
been discussed or implemented during the internship as it was not the main goal.

2.2.3 — High-level description

The idea here is to replace App equations that should be inlined with the equations of the called node. To
avoid name conflicts between the variables already defined and the one coming from the inlined node,
all the new variables are renamed using the Fresh monad described in [Pes23, sec. 4.2]. Moreover, for
simplicity, this optimization relies on subsequent compilation passes, and in particular on expression
inlining and dead equation elimination (see Figure 2). Indeed, these two passes remove trivial equations
and superfluous variables (e.g., those of the form x = y).

Node inlining generates three types of equations:

« the equations of the inlined node, after having renamed their variables;

« new equations to link the input variables of inlined nodes to the arguments of node calls;
« new equations to link the output variables the inlined nodes to the assigned variables.

Figure 11 shows an example of inlining: the blue equations (dotted) come from the inlined node after
having renamed its variables, the red ones (solid lines) link inputs to call arguments, and the green
ones (dashed) link outputs to assigned variables.

Page 8 on 29



1 node bar(x: int; y: int) lustre
1 node foo((a:int; b:int))  (lustre] . Y
2 returns (z: int);
2 returns (ic: int; d: int); 3 var t, u: int;
3 var e: int; 4 a', b', c¢', d', e': int;
4 let .(.:...=....é...4:..6.’ let
NN et 5 PO R
.................... c'=a' +b';
5 LA E by ey
................... 6 Renamed
6 d=c+ e :e' = gl = b':,; equations
7 tel
T e,
8 d' =clre';
9 node bar(x: int; y : int)
. 8 a' =x + 1);
10 returns (z: int); }Input
11 var t, u: int; 9 b' =y * 3}; equations
1 tet (lu, t) = 10 u=c'y Output
foo([x + 1, y * 3]); 11 T g equations
L z=t+u 12 z =1+ u; }Kept equation
14 tel 13 tel

Figure 11: Detailed example of node inlining

Finally, the reset signals are lifted: the reset signals attached to the node call are distributed over the
renamed equations and concatenated on existing reset signals. Intuitively, ensure that equations are
reset at the same times after inlining (see Section 3.3.3).

2.2.4 — Precise implementation

In Vélus, a compilation pass is a tranformation of the global environment, which contains nodes, types
and external function declarations. The goal of this part is then to show the construction of a function
of type global->global that inlines every node call that should be (see Section 2.2.2).

Figure 12 is an adaptation of the precise implementation in Rocq of the algorithm that inlines a
single equation. Small details have been omitted for clarity (an interesting but not important detail
is developed in Appendix D). Following the color code of Figure 11, the expressions in blue are
linked with the renaming of the equations of the inlined node, the red ones with input variables and
call arguments, and the green ones with output and assigned variables. The variable G is the global
environment, containing all the nodes, types and external functions of the program.

The implementation is quite straightforward: it is the direct translation in Rocq of the high-level
description in Section 2.2.3. Some details remain to be exaplined: the use of 1ift reset on renamed
equations, which will be detailed in Section 3.3.3, and the fresh states st, ..., st3. These variables are
internal states of the Fresh monad (introduced in [Pes23, part 4.2]), which guarantees some properties,
among them the most important are that variables generated successively, like new_in, new out and
new_vars, do not contain any duplicate, and that they are different from the other variables in the node
(see Section 3.1).

Using inline_equation, it is now possible to define inline_equations that inlines a list of equations
by iterating over them. To use the property on fresh states, it is necessary to pass the output state of
call of inline equation to its successor. This operation is not complicated but defining it precisely
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1 Definition inline equation

2 (G : global) (eq : equation) (st : fresh st)

3 : list equation * list var * list var * list var * fresh st :=

4 match eq with

5 | EqgDef | EqFby | EqLast => ([eql, [1, [1,
[1, st)

6 | EqApp ! _v:':\_r;‘ ckbase f m rs =>

7 (* Case: vars =ck (reset f every rs)(args) *)

8 let n := find node f G in

9 let '(m, stl) := fresh idents n.(n_in) st]

1o let '(new out) st2) := fresh idents n.(n_out) stl; in

11 let '(new vars, st3) := fresh idents n.(n _vars) st2 in

12 let sub := Env.from list (map fst (new in ++ new out ++ new vars)) in

13 let renamed eqs :=

14 map_(1ift reset rs) (map (rename equation sub) n.(n_egs)):

15 in

16 let in_eqs := map2 (fun '(( , var_in), ( , ck, )) arg =>

17 [EqDef var in (rename clock sub ckbase ck) (Eexp arg)]

18 ) [new_in] [args] in

19 let out eqs := map2 (fun var '(( , var_out), (ty, ck, )) =>

20 (EqDef var (rename_clock sub ckbase ck) (Evar var_out ty);

21 ) vars inew out) in

22 (renamed egs’ ++ ++ [out_egs/,

23 map (rename_var_clock sub ckbase) new in,

24 map (rename var clock sub ckbase) new out,

25 map (rename_var _clock sub ckbase) new vars,

26 st3)

27 end.

Figure 12: Function to inline an equation, adaptation of inline equation in NI.v

is laborious, so its concrete implementation is skipped here. It is now possible to define inline_node,
which is the important function proof-wise.

Figure 13 shows that the final transformation, that runs the node inlining algorithm in a node, expands
all the node calls that should be inlined (see Section 2.2.2). This shows that the precise implementation
is close to the high-level description, which is a good point for clarity.

The final tranformation to define is the function node_inlining of type global->global, mentioned
at the begining of this part. As it is not necessary to ensure that variables are distinct across different
nodes, the same fresh state can be used in multiple inline node invocations. Finally, to make sure that
inlining a node call inside a node call is done in the right order (meaning that a node call should only
be inlined once: an equation calling a node cannot be inlined after being copied by another inlining),
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1 Program Definition inline node
2 (G : global) (n : node) (st : fresh st) : node := let

3 ‘(new_eqs, new _in, new out, new vars, ) := inline equations G n.(n_eqgs) st

4 in {| n_name := n.(n_name);

5 n_in := n.(n_in);

6 n out := n.(n_out);

7 n_vars := n.(n_vars) ++ new_in ++ new out ++ new_vars;

8 n_eqs := new_eqs; |}.

Figure 13: Function running the node inlining algorithm in all the equations of a node
Adaptation of inline node in NI.v

1 Definition node inlining (G : global) : global :=
2 fold right (fun n gl => {|

3 types := gl.(types);

4 externs := gl. (externs);

5 nodes := (inline node gl n init st) :: gl.(nodes);

6

[}) {| types := G.(types); externs := G.(externs); nodes := []; |} G.(nodes).

Figure 14: Function running the node inlinig pass, from NI.v

the transformation must be done by “folding” over the global environment. As the nodes are stored in
the inverse order of their appearance in the source program (the first node is at the end of the node list
in the global environment), this function can be implemented with a fold right as in Figure 14. This
function has been added to the main function of the compiler in Velus.v, with a new flag to enable/
disable it (mainly for test purposes).

3 — Correctness of the node inlining

To reestablish compiler correctness after the addition of node inlining pass, some properties must be
verified. The goal is to ensure the syntactic properties at the creation of the node in Figure 13, which
are part of the type node itself (see Figure 15), and the semantic properties to complete the lemma
behavior nl to clinNLCorrectness.v, which states the correctness of the compilation of NLUSTRE
to CLIGHT (see Figure 2). During this internship, there was not enough time to complete all the required
proofs: only the syntactic, typing and some important semantic properties have been proved so far.

3.1 — Syntactic properties

3.1.1 — Presentation

The syntactic properties of NLUSTRE nodes are self-contained (see Figure 15): the only hypotheses that
can be used are the definition of the new node (in Figure 13) and the syntactic proofs of the old node
(coming from the transcription phase). In particular, semantic properties cannot be used here, which
will be important in a later explaination.

All the syntactic properties associated with a node (and therefore to be preserved) can be seen in
NLSyntax.v, and here translated in natural language:

« n_ingt0: there is at least one input, which is necessary to have the base clock of a node

« n_outgtO: there is at least one output

« n_defd: the variables defined, at the left side of the equations, are a permutation of output and local
variables

n_lastdl: last variables (see Section 1.3.3) are initialized by an EqLast equation
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1 Record node {prefs : PS.t} : Type := mk node {
2 n_name : ident; (* name *)

3 n_in : list (ident * (type * clock)); (* inputs *)

4 n_out : list (ident * (type * clock)); (* outputs *)

5 n_vars : list (ident * (type * clock * bool)); (* local variables *)

6 n_eqs : list equation; (* equations *)

7 (* Syntactic properties *)

8 1.

Figure 15: Definition of a node
Adaptation of the type node in NLSyntax.v

« n_lastd2: after their initialization, last variables can only be defined by control expression (so
external function calls are forbidden)
« n_vout: output variables cannot be defined with an EqFby equation

n_nodup: there are no duplicate variable names
« n_good: all the variables are either atomic (see Section 1.4) or prefixed by a special identifier in the
list prefs, and the name of the node is atomic

3.1.2 — Proofs

The proofs of preservation of syntactic properties are in NI.v.

The first two properties, n_ingt0 and n_outgt®, are trivial because n_in and n_out are not modified
in inline_node (see Figure 13). For n_defd, n_lastdl, n_lastd2 and n_nodup the proofs follow the
same schema: the property is first proved for the interesting case EqApp, then for any equation and
finally for a list of equations. Then, the final lemma is used in the case of the list of equations of the
node,from which the proof obligation follows almost directly.

Figure 16 shows a more detailed example for the n_defd property. The first lemma, proving the
property for the App case, relies only on the definition of inline_equation: the proof is entirely by
rewriting with no real difficulties. The second lemma, proving the propery for any equation, is very
simple: it only makes a disjunction on the form of the equation, and applies the previous lemma in the
only interesting case. The last lemma, proving the property in the general case, relies on an induction
on the equation list, on the previous lemma and on the transitivity of the Permutation property (to
split generated variables).

The properties n_lastdl and n_lastd2 have the exact same proof scheme, so they are not more
detailed. The proof for n_nodup, using same proof scheme, needed a little more work. Indeed, there are
no duplicates among the variables generated by inline_equations? This derives directly from the fact
that two lists of idents being generated one after the other is the same as generating a big list of idents
equal to the concatenation of the two lists®. It must then be shown that the generated variables are
exactly the output of the Fresh monad, but this is false because the output variables of Figure 12 have
their clocks renamed, and unfortunately clock renaming cannot commute with fresh ident generation.
The solution is to show that variables generated before this clock renaming are exactly the output
of a fresh ident generation®. Then, a property of the Fresh monad shows that idents of generated
variables have no duplicate, and renaming clocks do not change idents®. This concludes the proof that
newly introduced variables do not contain any duplicate. Then, it must be proved that there is no name

*Lemma inlining eqs generated variables no dup in NI.v

*Lemma fresh_idents app in Fresh.v

*Lemma inlining eqs generated variables before rename clock are fresh identsinNI.v
*Lemma inlining_eqs generated variables before rename clock map fstinNI.v
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1 Lemma vars defined eq app inline G st vars ck f args rs :
2 let '(new_eqs, new in, new out, new vars, st') :=

3 inline equation G (EgApp vars ck f args rs) st in

4 Permutation (vars defined new eqs) (new_in ++ new out ++ new vars ++ vars).

5

6 Lemma vars defined eq inline G st eq :

7 let '(new_eqs, new_in, new _out, new vars, ) := inline_equation G eq st in

8 Permutation (vars defined new_eqs)

9 (new_in ++ new_out ++ new vars ++ var_defined eq).

10

11 Lemma vars_defined eqs inline G st eqgs :

12 let '(new_eqs, new in, new out, new vars, ) := inline_equations G eqgs st in
13 Permutation (vars defined new_eqs)

14 (new_in ++ new out ++ new vars ++ vars defined eqs).

Figure 16: Intermediate lemmas for the property n_defd
Adaptation of lemmas with the same names in NI.v

conflict between the previous variables n. (n_in), n. (n_out) and n. (n_vars), and the generated one:
this is immediate thanks to the property AtomOrGensym prefs, that comes from n. (n_good), which
indicates that the already existing variables are either atomic (see Section 1.4) or have a prefix in the
list prefs, whereas the generated variables all have inline$ as a prefix, which is not in prefs.

The proof of n_vout was the trickiest one to find: I tried to follow the same proof scheme as n_defd but
this did not work as intended. The solution was to use n_nodup to show that output variables cannot be
located in newly generated variables, and to conclude by observing that an output variable was either
not defined through an inlined App, so the property of the input node can be applied, or is defined
through it, in which case the output variable is defined with an Def (see Section 2.2.4).

The final property n_good is immediate because the node name did not change so it is atomic, and all
the other variables already had good names. The only trick here is to add the prefix inline to the list
prefs, so that generated variables verify AtomicOrGensym.

In conclusion, syntactic properties were not hard to prove: most of the proofs were direct implemen-
tation of intuitive ideas. However, they provided a good entry point in the Vélus architecture, which
was helpful for the following proofs. Some tricks had to be implemented (like the one described in
Appendix D), but nothing hard.

3.2 — Typing preservation

3.2.1 — Presentation

An expression in NLUSTRE is said to be well-typed in a context [: list (ident * type * bool)
if, for every variable x of type ty that it contains, (x,ty, true) € I if z is used in a last expression
(see Section 1.3.1), and (z, ty, false) € I" otherwise®. Moreover, a clock ck is well-typed in a context I"
if every variable z of type ty of ck is such that (z, ty, false) € I" (see wt_clock in CETyping.v).

Well-typing extends to equations in a context I' if every variable, expression and clock of the equation
is well-typed in I'V. A node is said to be well-type in a global environment G (see Section 2.2.4) if it
satisfies two conditions (see wt_node in NLTyping.v):

*Defined by wt_exp, wt_cexp and wt_rhs in CETyping.v
"Defined by wt_equation in NLTyping.v
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» Each equation is well-typed in the environment I' defined as the concatenation of input, output
and local variables (the boolean is set to false for input and output variables, and to the boolean
contained in the local variables otherwise, see Figure 15).

« Each type of an input, output or local variable is either a primitive type or declared in the global
environment G.

However, these two properties were not sufficient to prove that well-typedness, a third condition has
been added: each clock of an input, output or local variable is well-typed in the same environment I"
as the one used for equations. This property has been proved in the transcription phase (see Figure 2)
to ensure its validity. Its usage is detailed in Section 3.2.2.

Finally, a global environment G is said to be well-typed if there are no duplicate nodes names, and if
every node is well-typed in the global environment G restricted to the nodes defined previously®.

3.2.2 — Proofs
The proofs of typing preservation are in NITyping.v.

The proofs of type preservation are mostly direct, following the same kind of case analysis as done
for syntactic properties (see Section 3.1.2). Two facts are worth mentionning: the proof of type preser-
vation of an equation and of a node cannot only rely on the typing properties of the input equation/
node, and the typing properties are preserved under renaming.

Indeed, as node inlining requires information only present in the global environment, the typing
properties must be true not only for the equation/node before inlining, but also for the nodes that will
be inlined. Moreover, it must be known that called nodes are defined before the current one in the global
environment. This is exactly the meaning of the predicate Ordered_nodes (defined in NLOrdered. v):
proving it for a node is not direct, but an important lemma for this predicate indicate that wt global
G implies Ordered nodes G’. The complete proof of type preservation, which states that wt_global G
implieswt _global (node inlining G), follows by induction on nodes in the global environment. The
well-typedness of the nodes of G are then used to show Ordered nodes, and the well-typedness of the
nodes of node_inlining(G) to show the property for the inlined nodes after a call to inline equation
on an EqApp.

Moreover, as the equations coming from the inlined node are renamed to avoid duplicates (see Section
2.2.4 and Section 3.1.2), it must be shown that renaming has no incidence on typing. This results in a
series of lemmas of the form “wt I x implies wt (rename_environment ) (rename x)”. Figure 17
shows an example of such lemma for the case of a simple expression.

In conclusion, typing proofs were not hard either. They were rather intuitive, and mostly direct but
long. Moreover, they involved a large number of concepts from different parts of the compiler, which
was really helpful not to be in difficulty during the semantic proofs. Finally, the definition of well-
typedness changed by a little, which was necessary for its preservation. The change is intuitive, so no
downside had to be noted about it.

1 Lemma wt exp rename (types : list type) (sub : Env.t ident)
2 (I : list (ident * (type * bool)) (e : exp)
3 wt _exp types I' e -> wt_exp types (rename_environment I') (rename_exp sub e).

Figure 17: Typing preservation of an expression after renaming variables
Adaptation of wt_exp rename in NITyping.v

*Defined by wt_global in NLTyping.v
’Lemma wt_global Ordered nodes in NLTyping.v
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1 Inductive svalue : Type := absent | present (v : value).
2 Definition env : Type := ident -> option svalue.

3 Definition history : Type := nat -> env.

4 Definition vstream : Type := nat -> svalue.

Figure 18: Definition of an hisory in Rocq, adapted from IndexedStreams.v

3.3 — Semantics preservation

3.3.1 — Presentation

The idea of semantics preservation is broadly the same as for type preservation: under the hypothesis
that a node f has a “good semantics” in a global environment G, we must show that the same node has
the same semantics in the global environment node_inlining G.In Vélus, NLUSTRE has two equivalent
semantics: an indexed semantics where stream A is defined as nat -> A, and a coindexed semantics
where Stream A is defined as follows (from the Rocq standard library):

1 CoInductive Stream (A : Type) := Cons : A -> Stream A -> Stream A.

A proof of equivalence between the two semantics [Bru20, part 2.4] is in NLIndexedToCoind.v and
NLCoindToIndexed.v. For our proofs indexed semantics is easier to work with, so only the indexed
representation of streams will be used here.

An environment is needed to associate variables, denoted by their identifiers, to their values at each
instant. This is called history, and is defined in Figure 18. It is now possible to define the semantics
of a variable with the predicate sem_var_instant E x v, whose meaning is “the variable x has value
v in the environment E”, and the predicate sem var H x v, whose meaning is “at each instant i, the
variable x has value (v 1) in the environment (H 1)” (see Figure 19).

This definition is extended to the expressions defined in Section 1.3.1, with the usual semantics for
CLIGHT operators and case, and with the semantics defined in Section 1.3.2 for merge and when. The
operator last has a more complex semantics that will be detailed later. Semantics for equations and
nodes are defined by mutual induction: the semantics of a node depends on the semantics of each
equation, and the semantics of a node call through an App equation is the semantics of the called
node. These definitions are called sem equation and sem node in NLIndexedSemantics.v, and will
be detailed when needed. The meaning of sem equation G bk H e is “the equation e has a good
semantics in H with a base clock bk in the environment G”. In the case of a node, sem node G f ins
outs means that “the node f associates the inputs ins to the outputs outs in the environment G”. The
formal definition is in Figure 20.

3.3.2 — Proof overview

The proof of semantics preservation is in NICorrectness.v.

The theorem of correctness (semantics preservation) is: sem_node G f ins outs implies sem_node
(node_inlining G) f ins outs, to show that whether or not nodes are inlined, the semantics remains
the same. As the definition of a node may change during the call to node_inlining, it is necessary
to apply SNode, the only constructor of sem_node (see Figure 20). However, it requires to exhibit an

1 Definition sem var instant (E : env) (x : ident) (v : svalue) : Prop :=
2 E x = Some v.

3 Definition sem var (H : history) (x : ident) (v : stream svalue) : Prop :=

4 forall (i : nat), sem var _instant (H i) x (v 1i).

Figure 19: Semantics of a variable, adapted from IndexedStreams.v
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Inductive sem node: (* ... *) -> Prop :=

| SNode (H: history) (f: ident) (ins outs: list vstream) (n: node):
find node f G = n ->

1
2
3
4 sem vars H (map fst n.(n_in)) ins -> sem vars H (map fst n.(n_out)) outs ->
5 sem clocked vars (clock of ins) H n.(n_in) ->

6 Forall (sem equation (clock of ins) H) n.(n_eqgs) ->

7

sem_node f ins outs.

Figure 20: Adaptation of sem_node, from NLIndexedSemantics.v

history H such that every equation e of the node n has a good semantics with history H in environment
G (line 5 of Figure 20), with n in G with name f. H contains all the values taken by the variables in
n. However, providing such H is no easy task as it cannot be derived entirely from sem node G f
ins outs: indeed, each inlined node will come with many new variables that must be present in the
provided H.

It is then necessary to prove that such an H exists. It can be made explicite by stating that each
inlined node contains a history with an inversion on the semantics of the equation (see Figure 21). The
complete H is then the disjoint union of all the environments corresponding to the inlined nodes, and
of the one coming from the inversion of the hypothesis sem node G f ins outs. A lemma states a
major property needed for this sketch'’: if an equation eq has a good semantics in the environment G
with an history H, then either this equation is not a node call or is a node call not inlined, or either this
equation is an inlined node call, in which case there exists an history H' such that all the generated
equations have a good semantics in the environment G with an history H v H'.

From this property, three questions can be asked: How to generate such H'? Why the union of H and H'
and not just H'? Why is the union disjoint? The intuitive idea is that by inverting a sem_equation with
an App equation (see Figure 21), the semantics of the called node is then provided as an hypothesis,
allowing us to do an inversion on this hypothesis (see Figure 20), which gives an history H'. This
H' only contains (or at least can be restricted to) contain only the variables of the called, whereas H
contains the variables of the callee node. As all of the variables have been proven to be dsjoint (in
Section 3.1), it is possible to prove that Hand H' are disjoint. For example, in Figure 11, H contains X, y,
z, t, and u whereas H' containsa',b',c',d',and e".

Unfortunately, this idea does not work directly. Inverting on sem_equation G bk H (EqApp xs ckbase
f args rs) do not give sem_node G f ins outs for a node of name f, but forall k, sem_node
f (mask k rs ins) (mask k rs outs) (see Figure 21). The difference here is crucial: it means that
the semantics of the node does not hold directly for all the stream of inputs and outputs, but holds
separately for each mask sampled by the reset signals (see Section 1.3.4). The key point is now to find
a link between the semantics of the node that holds for all the input and output streams, knowing that
it holds for each masked section of the same input and output, delimited by the reset signals.

1 Inductive sem equation: stream bool -> history -> equation -> Prop :=
2 | SEgApp (H : history) (f : ident) (* ... *) @ (* ... *) ->

3 (forall k, sem node f (mask k rs ins) (mask k rs outs)) ->

4 sem_equation bk H (EgApp xs ck f args rs)

Figure 21: Adaptation of sem_equation for the case App, from NLIndexedSemantics.v

Lemma node_inlining_sem node exist equation history in NLIndexedSemantics.v
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1 Definition lift reset (rs : list ident) (eq : equation) : equation :=
2 match eq with

3 | EgDef x ck e => EqDef x ck e

4 | EgLast x ty ck ¢ rs' => EqlLast x ty ck c (rs ++ rs')

5 | EqApp xs ck f args rs => EqApp xs ck f args (rs ++ rs')
6 | EqFby x ck ¢ e rs => EqFby x ck c e (rs ++ rs')

7

end.

Figure 22: Definition of 1ift_reset, from NLSyntax.v

3.3.3 — Lift reset

For clarity, in this part ¢ and j will always denote an instant, and k the number of a mask.

3.3.3.1 — Properties overview

The last issue introduced in the previous part is the main problem encountered during the internship.
The goal is to have a property stating the semantics of all the equations of the called node for the
inputs and outputs. Intuitively, these equations are reset by two lists of reset signals: the one coming
from the equation, the inner reset signals, and the one coming from the fact that the node call, that
inlined the equation, is also reset. This explains the use of the 1ift_reset function, introduced for this
purpose and defined in Figure 22. Its definition is quite simple: it concatenates the inner and the outer
reset signals. The lemma sem_node_unmask, whose sketch is in Figure 23, glues everything together:
it states that if the semantics of a node is true for each mask of the inputs and outputs, then there
exists a history H' for which each of the node equations satisfies the semantics after lifting the outer
reset signals with which the node has been called. The proof of this lemma is not complete, but all the
biggest issues have been addressed.

3.3.3.2 — Existence of a history H'

The existence of this history can be summed up in Figure 24. The goal is to provide an H’ such that
at each instant ¢, H'(7) is the environment obtained from the inversion of the hypothesis sem_node
for the corresponding mask k. Finding k from 7 is easy: it is the index of the mask delimited by rs
at the instant ¢. This is exactly the number of times rs is T between 0 and ¢ (included), which is the
definition of the function count (see Figure 25). So, the mask k in which the instant ¢ is located is
exactly count rs i.To obtain Hy, it is sufficient to do an inversion on the hypothesis sem_node ...
with & = count rs i (see Figure 20). However, we need to give a function of type nat -> env, and
sem_node is a property, which cannot be inverted when the goal is not a property due to Rocq’s type
system. To solve this issue, we need to use the functional axiom of choice (which was already in use
in the compiler), which is defined in Rocq’s standard library**. It allows to convert a forall (a
A), exists (b : B), R a bintoan exists (f : A -> B), forall (a : A), R a (f a),which
is exactly what is needed. Finally, to provide the history H', we use the function fH provided by the
functional axiom of choice: it ensures that for any mask k, fH k is the history obtained after inversion
of sem_node. The history provided to apply SNode (see Figure 20) is then exactly the function fun (i :
nat) => (H i) U (H' i), where H' := fun i => fH (count rs i) i:ateach instant i, we take
fH at the mask index k = count rs i and the instant ¢ (see Figure 24).

1 Lemma sem_node_unmask (*...*) :

2 (forall (k: nat), sem node G f (mask k rs ins) (mask k rs outs)) ->
3 exists (H' : history), (* ... *) /\
4 Forall (sem equation G bk H') (map (lift reset rs) n.(n_eqs)).

Figure 23: Sketch of lemma sem_node_unmask, adapted from NLIndexedSemantics.v

In Coq.Logic.IndefiniteDescription

Page 17 on 29


https://rocq-prover.org/doc/V8.20.1/stdlib/Coq.Logic.IndefiniteDescription.html

rs

count rs i

Fixpoint count

(rs : stream bool) (i : nat) : nat :=

1
2
( , ) 3 let ¢ := match i with
i X H,
- ! 4 | 0 =>0
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. 6

iX

| Si=>count rs i

end in if rs i then S c else c.

iy
__/

- Figure 25: Definition of count, from
o0
Figure 24: Existence of an history H' IndexedStreams.v

3.3.3.3 — Proof of sem_equation_lift_reset

To show sem_node_unmask, now that H' has been defined, it is sufficient to reason on one equation
at a time to prove the Forall statement. This introduces the biggest lemma of the internship whose
proof is complete, sem_equation_lift reset, and whose sketch is in Figure 26. Only the major
hypotheses are displayed here: the first one states, see Figure 24, that the environment defined outside
the corresponding mask, for example Hj (j), associates every variable to either None (undefined) or
Some absent (defined but always absent). The second one indicates that the environment of the calling
node H is disjoint from the the environment of the calling node. The third one comes directly from the
hypothesis of the lemma sem_node_unmask, whose proof invokes this lemma.

The proof is built on a disjunction on the type of equation. In each case, a functional choice is done to
exhibit variables needed by the constructor of sem_equation (see Appendix E). The case Def is direct
because it does not hold any reset signal, so 1ift_reset has no effect on the semantics (see Figure 22).
The other cases are much more difficult. In particular, one property for the Last/Fby cases (the proofs
are almost exactly the same), and one property for the App case.

For the cases Fby/Last, let’s denote the outer reset signals (coming from the node call) rs and the
inner (coming from the equation) rs'. The property can be rewritten as in Figure 27. Here, reset and
fby are not NLUSTRE operators but Rocq functions used for the indexed semantics. Their definitions
are detailed in Appendix F, and here is a brief description: in a context where xs is always present and
v is constant, reset v xs rs iisequaltovifrs iisT, and xs i otherwise. Moreover, under the
same assumption, fby v xs 0 is equal to v, and fby v xs (S 1) is equal to xs 1i. This property
may seem conterintuitive but has been formally proved'. The first idea tested such property was to
reason by induction on the instant i, but this did not work because of the absences. Instead here are
the disjunctions (see schemas in Figure 28 to follow the cases): if xs 1 is absent then both sides are
also absent so equal. Otherwise, xs i is present and two cases are to consider: rs' i = trueand rs'
= false.

*Ifrs' i = true (case @in Figure 28), then both sides are reset, so by the definition of reset both

sides are equal to v.

Lemma sem equation_ lift reset (* ... *) :

(* 1 %) (forall (k i : nat) (x : var_last),
k <> count rs i -> fH k 1 x = None \/ fH k i x = Some absent) ->
(* 2 *) (forall (i : nat), disjoint (H i) (fH (count rs i) 1i)) ->
(* 3 *)(forall (k : nat), sem equation G (mask k rs bk) (fhk k) eq) ->
sem_equation G bk (fun i => (H i) U (fH (count rs i) i)) (lift reset rs eq).

o U b~ W N R

Figure 26: Sketch of lemma sem_equation lift_reset, adapted from NLIndexedSemantics.v

Lemma sem_reset fby lift reset extension in NLIndexedSemantics.v
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1 (forall (j
2 reset v (fby v xs) rs' i = reset v (fby v xs)

: nat), count rs j <> count rs i -> xs j

(fun j => rs j

absent)

Figure 27: Simplified property for Last/Fby cases

->

rs' j) i

« If rs' i = false, two other cases are to consider: rs i = trueand rs i = false.

*Ifrs i = true (case @ in Figure 28), then the right side is reset so is equal to v, and i is the first

instant in which xs 1i is present (because of the hypothesis, and that j < i -> count rs j <>
= true), so the left side must be equal the first value of the fby: both sides
are equal to v (see lemma reset fby first value).

count rs iasrs i

» The last case is the most complex and interesting: rs i

false and rs'

i = false: the idea is

to consider whether there exists a instant j € [0, ¢[ such that xs j # absent V (rs j | rs'j = T).

— If no such j exists, then Vj € [0,i[,zs j = absent Ars j =F Ars’j =F, so by the same

argument as in @, both sides are equal to v.

- Is such j exists, we take the maximal j such that xs j # absent or rs j || rs’j = T. Thus, Vj <

m < i,xs m = absent Ars m=F Ars'm =F.

* If xs j = present c (case @ in Figure 28), then the instant ¢ is not reset and no reset has to

be propagated because of the absences, so both sides are equal to zs i.

* Otherwise, zs j = absent and rs j | rs'j =T (case@in Figure 28), so the reset signal in j

is propagated to 4, so both sides are equal to v.

All the cases are covered, which concludes the proof for the cases Fby/Last.

For the case App where the node with name g is called, with input streams ins and output streams

outs, let’s denote the outer reset signals (coming from the node call) rs and the inner (coming from

the equation) rs'. The property can be rewritten as in Figure 29. The key idea is that knowing that

the node g has a good semantics on every mask m induced by the reset signals rs', we have to show

that this is the case on every mask 1 induced by the reset signals rs || rs' (notation for fun (i :

nat) => rs i || rs' i). Thisis summed up in Figure 31. As a well-typed node whose inputs and
outputs are always absent has a good semantics*?, the case study can be limited to three possibilities:

+ If the mask induced by rs' is contained in the mask induced by rs (case i, in Figure 31), then there

exists a mask index induced by rs || rs' which is exactly the same as the one induced by rs'. In

this case, the hypothesis on the corresponding mask induced by rs' solves the goal directly.
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> 400

Figure 28: Example cases for the proof of sem_reset_fby 1ift reset_extension

*Lemma sem_node_absent in NLIndexedSemantics.v
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(forall (j : nat), count rs j <> k -> ins j = absent ) ->

(forall (j : nat), count rs j <> k -> outs j = absent) ->
(forall m : nat, sem node G g (mask m rs' ins) (mask m rs' outs)) ->

A W N =

sem node G g (mask 1 (rs || rs') ins) (mask 1 (rs || rs') outs)

Figure 29: Simplified property for App case

1 Lemma count ors incl iff (k : nat) (rsl rs2 : cstream) :

exists (n m : nat), forall (i : nat),

N

3 count (ors rsl rs2) i = k <-> count rsl i = n /\ count rs2 i = m.

Figure 30: Definition of count_ors_incl iff, from IndexedStreams.v

« If the mask induced by rs' ends but does not start, or starts but does not end in the mask induced
by rs (cases 4; and i3 in Figure 31), then the semantics is preserved because extending by the left
or by the right inputs and outputs with absences does not change the semantics of a node, because
inputs and outputs are absent outside the mask induced by rs.

The key property to prove this lemma is given by count_ors_incl iff in IndexedStreams.v, whose
definition is in Figure 30, and which describes the “intersection” of the masks induced by rs, rs', and
rs || rs'.Other big but less interesting detail are discussed in Appendix E. This concludes the proof
of sem_equation_lift reset, which is the main lemma of the semantics preservation that has been
found during this internship.

4 — Conclusion

During this internship, node inlining has been fully implemented, and many of the properties required
to ensure compiler correctness were proved. The time spent on getting used to Vélus and on syntactic
and typing proofs was expected, but the semantic preservation proofs were a much harder than what
we thought at first. In particular, the modular reset brought problems that took weeks to solve entirely.

Adding node inlining in LUSTRE and not in NLUSTRE would have solve a significant issue: no need to
propagate the outer reset signals with a lift reset, creating a reset block would suffice (see Appendix
B). The new blocks would then have been normalized by the last block compilation pass (see Figure 2).
However, proving that the nodes before and after inlining share the same semantics may have been
harder. The natural follow-up question is whether node inlining would have been in LusTre. This is not
a priority for further development of Vélus, but it would be interesting to see this question answered.

rs F F F F T F F F F F F F F T F
F

rs' F T F F F F T F F F F T F T
count (rs | rs') i, count (rs | rs') iy
— A —
E count 75 %93 L

f———count rs' i ——F——count rs' 5,——F—count rs' i3;—
/ol /

T T T T
| | | |
| | | |
+ X + X + X +
| | | |
outs / | | | |
1 1 1 1

/[l i i3 /

i

count (rs | rs') iy

Figure 31: Schema of sem_node_mask_or
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Appendixes
A — Full paths of source files

Abbreviation Full path

CETyping.v src/CoreExpr/CETyping.v

CommonList.v src/Common/CommonList.v

Ident.v src/Ident.v

IndexedStreams.v src/IndexedStreams.v

NI.v src/NLustre/NodeInlining/NI.v
NICorrectness.v src/NLustre/NodeInlining/NICorrectness.v
NITyping.v src/NLustre/NodeInlining/NITyping.v
NLCorrectness.v src/NLCorrectness.v

NLCoindToIndexed.v src/NLustre/NLCoindToIndexed.v

NLIndexedSemantics.v | src/NLustre/NLIndexedSemantics.v

NLIndexedToCoind.v src/NLustre/NLIndexedToCoind.v

NLOrdered.v src/NLustre/NLOrdered.v
NLSyntax.v src/NLustre/NLSyntax.v
NLTyping.v src/NLustre/NLTyping.v
Velus.v src/Velus.v

B — LUSTRE syntax
LUsTRE is a much more complex language than NLUSTRE. Here is the formal definition:

Expressions
e := ¢ (constant)
| C' (enumeration value)
|  (variable)
| o e (unary operator)
| e ® e (binary operator)
| et fby et (follow-by operator)
| et — et (arrow operator)
| et when C(z) (sub-sampling)
| merge z (C' = e*)™ (over-sampling)
| case e of (C = et)" (pattern matching)
| f(eT) (node call)

| (reset f every e)(e™) (node call with reset)

Node declarations
n = node f(var®) returns (vart) blk

Blocks
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blk == z+ = e* (equation)
| var var* let blk™ tel (local block)
| switch e (C do blkt)™ end (switch block)

| last = e (shared variable initialization)
| reset blk™ every e (reset block)

| automaton initially autinits (state C autscope)™ end (weak automaton)

| automaton initially C (state C' do blk* unless trans)” end (strong automaton)

Automaton initialization
autinits == C' (default state)

| if e then C otherwise autinits (conditional flow)

Automaton scopes

autscope == var var* do blk' until trans®t

Automaton transitions
trans == if e continue C
| if e then C

Variable declarations
var =z : ty on ck
Type declarations

ty = type tx = C*

The main differences with NLUSTRE are:

« Operators like fby and node calls can occur in a sub-expression.

« Nested blocks, wherereset can be applied to a block (of equations, of local blocks, ...).
« State automatons (compiled during State machines phase in Figure 2).

C — sin/cos program

The following program returns an approximation of sinus and cosinus, where the input starts at 0
and increases with a step pas. The formulas come from the Taylor expansion of sinus and cosinus. It
is a direct adaptation of the test in test/good/t00.z1ls from Zélus [BP13], a synchronous language
extended with Ordinary Differential Equations (ODEs) to program hybrid systems that mix discrete-
time and continuous-time models. Currently the program in Figure 32 does not compile in Vélus, but
it is the goal of node inlining with a better dependency analysis.

D — Usage of map2_left in inline_equation

In the function inline_equation (whose implementation is in Figure 12), a simplification has been
made on the definition of in_eqs and out_eqs. Indeed, using the standard map2 (whose implementation
is in Figure 33) led to being unable of proving the syntactic property n_defd (see Section 3.1). This
was due to the fact that using map2 on two lists of different lengths returns a new list whose length is
the minimum of the lengths of input lists. Moreover, during the syntactic proofs, there is no property
specifying that a node call must have the good number of arguments and variables on the left side: it
is implied by typing and semantics properties. So, there was no way of proving that in_eqs defines
exactly the new_in variables: some variables could be lost due to the usage of map2.
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1 node euler forward(h: real; x0: real; der: real)
2 returns (y: real);

3 let

4 y = x0 fby (y + h * der);

5 tel

6

7 node euler backward(h: real; x0: real; der: real)
8 returns (y: real);

9 let

10 last y = x0;

11 y = last y + h * der;

12 tel

13

14 node sin cos(pas: real)

15 returns (sy: real; cy: real);

16 let

17 sy = euler forward(pas, 0.0, cy);

18 cy = euler backward(pas, 1.0, - sy);

19 tel

Figure 32: LUSTRE program computing sinus and cosinus

The idea I had to overcome this was to introduce a new function map2_ left (whose definition is in
Figure 34). The idea is to provide a defaut argument for the second argument of the function, to ensure
that the length of the result is equal to the length of the first list (see the lemma map2_left_length in
CommonList.v). This trick is enough to prove the syntactic properties, and does not impact the other
proofs because typing properties ensure the equality between the lengths of the two lists: map2_left
can then be rewritten into map2 (see the lemma map2 left is map2 in CommonList.v).

1 Fixpoint map2 {A B C : Type}
2 (f: A->B ->C) (L : list A) (1': list B) : list C :=

3 match 1, 1' with

4 [0, 1, [1 =11

5 [ a:: 1, b:: 1" =>

6 fab::mp2 f 11

7 end.

Figure 33: Definition of map2, from CommonList.v

1 Fixpoint map2 left {A B C : Type}

(default : B) (f : A -> B -> C) (l: list A) (1': list B) : list C :=
match 1, 1' with

[ [1, =11

[ a:: 1, [] == f a default :: map2 left default f 1 []

[a:: 1, b:: 1" =>fab :: map2 left default f 1 '

end.

N o o A WN

Figure 34: Definition of map2_left, from CommonList.v
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Lemma functional choice :

forall (A B : Type) (R : A ->B -> Prop),
(forall x : A, exists y : B, R x y) ->
(exists f : A -> B, forall x : A, R x (f x)).

A W N =

Figure 35: Functional axiom of choice,
from Coq.Logic.IndefiniteDescription

E — Existential variables of sem_equation

E.1 — Presentation

In addition to showing that an history H' satisfiying sem node_unmask exists (see Section 3.3.3.2), the
functional choice property (whose definition is in Figure 35) is used once for each case in the proof
of lemma sem equation lift reset. This is needed to exhibit variables that must be provided when
applying the constructor of sem_equation for the good equation variant.

For example, in the Last case, whose constructor is in Figure 36, the variables xs, ys and rs do not
appear in the conclusion so they are existential variables. Moreover, as the main hypothesis tells that

forall (k : nat), sem equation G (clock of (mask k rs ins)) (fhk k) eq (see Figure 26), it is
not possible to give immediatly a definition for those variables'*. Indeed, the situation is the same as
in Section 3.3.3.2: for all mask index k, it is possible to give variables s, ys, and rs,, satisfying the
properties, for this mask k. The functional axiom then gives us a function f which provides for each
k the variables xs;,, ys; and rs,,. Finally, using the same principle as in Section 3.3.3.2, the needed xs
isequalto fun i => let '(xsk, , , ) :=f (count rs i) in xsk i.Some variables however,
like ys in the case Last, require more work.

E.2 — From syntactic to semantics reset signals
In this part, Last is taken as an example, but this is also true for the cases Fby and App.

A simplification that has been made in Section 1.3.4 cannot be use here: the syntactic and semantics
representation of reset signals are here represented by different variables. In Figure 36, syntactic reset
signals (list of identifiers) are denoted by xrs, and semantics reset signals (stream of booleans) are
denoted by rs. The link between the two is done by the two properties Forall2 (fun '(x, ) =>
sem var H (Var x)) xrs ysand bools ofs ys rs. The idea here is to create a new variable ys of
type list (stream bool) such that each variable in xrs has for semantics the stream at the same

1 Inductive sem equation: stream bool -> history -> equation -> Prop :=
2 | SEgLast (bk : stream bool) (H : history) (x : ident) (ty : type)

3 (ck : clock) (cO : cst) (xrs : list (ident * clock)) (xs : stream svalue)

4 (ys : list (stream bool)) (rs : stream bool)

5 sem var H (Var x) xs ->

6 sem _clocked var bk H (Var x) ck ->

7 Forall2 (fun '(x, ) => sem var H (Var x)) xrs ys ->

8 bools ofs ys rs ->

9 sem var H (Last x) (reset (sem const c@) (fby (sem const cO) xs) rs) ->

10 sem_equation bk H (EgLast x ty ck cO xrs).

Figure 36: sem_equation constructor for the case Last,
from NLIndexedSemantics.v

*After some discussion, we conjectured that it is possible for some variables using the history. However, this solution
would be more complex to reason on it, so we chose to stay with the use of the functional axiom of choice.
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1 ys' :=map (

2 fun idx => fun i => let '"( , ys, , ) :=f (count rs i) in ys[idx] i
3 ) (seq 0 m)

Figure 37: Simplified definition of ys'

position in ys, and for each i, rs i = true if and only if at least one of the streams y of ys satisfies y
i = true.

Intuitively, as the equation must be reset if at least one of the reset signals is true, the semantics of xrs
++ xrs'is fun i == rs i || rs' i, with rs' defined as xs above: rs' := fun i => let '( ,
~, rsk, ) :=f (count rs i) in rsk i.Moreover, the intermediate variable ys linked to xrs +
+ xrs' would be ys ++ ys' for some ys'. One could think that it is sufficient to define ys' as xs or
rs' above, but unfortunately this does not work. Indeed, if we keep the part of f linked to ys, denoted
after fys, its type would be fys : nat -> 1list (nat -> bool), and we want a variable ys' of type
list (nat -> bool). Here comes the main issue: inverting a stream of lists and a list of streams.

The solution that has been found is the following: take the variable at the same index of the list at each
instant. This can work by the fact that for all i, the length of fys i isequal to the length of xrs', denoted
m (which can be easily proved). Then, the simplest way of doing it is by creating a list [0, 1, ..., m
- 1], then mapping each index to the good stream of fys. As a result, the provided variable ys is ys +
+ ys', where ys' is defined as in Figure 37. The lemmas sem_reset_signals_variables_concat and
sem_reset_signals_bools_ofs then prove that the variables shown here are satisfy both properties.

E.3 — Changes in the proof in the case App

To hide the complexity induced by the use of the functional axiom of choice, the properties presented
in Figure 27 and Figure 29 are simplified: for example, the variables xs and z s, are assimilated. For
the cases Last and Fby, this do not change the proof a lot, but the case App requires another big step
in the proof. Indeed, in Figure 29, the hypothesis forall m : nat, sem node G g (mask m rs'
ins) (mask m rs' outs) isinreality forall m : nat, sem_node G g (mask m rsk ins) (mask
m rsk outs).

This change is in fact really important, because of the count function that depends on the all the
values of the reset signals. The situation can be summed up in Figure 38: rs;, is equal to s’ on the
mask of index k, and is equal to F everywhere else. The only thing missing to complete the proof is
to show that any mask induced by rs || rs', which is entirely contained in the k™ mask of rs, is
also a mask of rs || rsk. This property is shown by the lemma mask _extended reset on window
(in NLIndexedSemantics.v), which shows the existence of an index m such that forall xss i,
mask 1 rs' i xss = mask m rsk xss i.This derives directly from another property on count,
count_extended_reset (in NLIndexedSemantics.v), whose definition is in Figure 39.

F — reset, fby, doreset, and hold functions

The functions reset and fby have been quickly introduced in Section 3.3.3.3, but their implementation

is more complex that one could expect due to the absences. Indeed, absences “delay” reset signals and

the left part of a fby. The definition of fby relies on another function hold, both defined in Figure 40,

and the definition of reset relies on doreset, both defined in Figure 41. In particular, those definitions

exhibit two facts on fby and reset:

+ It confirms that using an induction on 1i alone is not suited to prove properties on those functions. It
is however useful with another property that gives information on the previous values. For example,
the lemma fby uninitialized (in NLIndexedSemantics.v), whose definition is in Figure 42, is
proved with an induction on the instant i, but this works due to the other hypothesis that states a
property for all instant j such that j < i.
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Figure 38: Definitions of rs;, and rs’
Lemma count extended reset (rs : cstream) (frs : nat -> cstream) (k n :
- - # Rocq

nat)
count rs n = k ->
(forall (i : nat), count rs i <> k -> frs k i = false) ->
exists (d : nat), forall (i : nat),
count rs i = k ->

o U b~ WN

count (fun j => frs (count rs j) j) i =d + count (frs k) 1i.

Figure 39: Lemma count_extended_reset,
from NLIndexedSemantics.v

« It shows a key property of LusTRE/NLUSTRE nodes: the indepence from initial absence. This property,
shown in [BPP23] and described in [Jea24, part 4.3], states intuitively that a function f associated to
anode (like fby or reset), always verifies V zs, f({) - xs) =~ () - f(xs). This property is what made
possible the proof of sem_equation_lift_reset in the case App, with the lemmas sem _node _mask_or
and sem_node_absent.

1 Fixpoint hold (v : value) (xs : stream svalue) (i : nat) : value :=
2 match i with

3 | @ =>wv

4 | S j => match xs j with

5 | absent => hold v xs j

6 | present hv => hv

7 end

8 end.

9

10 Definition fby (v : value) (xs : stream svalue) (i : nat) : svalue :=
11 match xs i with

12 | absent => absent
13 | => present (hold v xs 1i)
14 end.

Figure 40: Definition of hold and fby, from NLIndexedSemantics.v
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1 Fixpoint doreset (xs: stream svalue) (rs: stream bool) (i : nat)
2 : bool :=
3 if rs i then true
4 else match i with
5 | @ => false
6 | S j => match xs j with
7 | absent => doreset xs rs j
8 | present => false
9 end
10 end.
11
12 Definition reset (v : value) (xs : stream svalue) (rs : stream bool) (i :
13 : svalue :=
14 match xs i with
15 | absent => absent
16 | present x => if (doreset xs rs i) then present v else present x
17 end.
Figure 41: Definition of doreset and reset, from NLIndexedSemantics.v
1 Lemma fby uninitialized (v : value) (xs : vstream) (i : nat)
2 (forall (j : nat), j <1 -> xs j = absent) ->
3 xs i = absent \/ fby v xs i = present v.
4 Proof.
5 intros H.
6 induction 1i.
7 1: {
8 unfold fby.
9 destruct (xs 0); auto.
10 }
11
12 destruct (xs (S i)) egn: Hxs; [ auto | ].
13 right.
14 unfold fby.
15 rewrite Hxs.
16 f equal.
17 apply hold first value.
18 assumption.
19 Qed.

Figure 42: Lemma fby uninitialized, from NLIndexedSemantics.v

Page 27 on 29

nat)



Bibliography

[Bou+17]

[BBP19]

[Bou+21]

[BPP23]

[Hal+91]

[Ler09]

[ICc24]

[Bru20]

[Pes23]

[Jea24]

[KKM24]

[Bie+08]

[CPP17]

[CP99]

[JRH20]
[HP0O]

T. Bourke, L. Brun, P.-E. Dagand, X. Leroy, M. Pouzet, and L. Rieg, “A formally
verified compiler for LusTrE,” SIGPLAN Not., vol. 52, no. 6, pp. 586-601, Jun. 2017, doi:
10.1145/3140587.3062358.

T. Bourke, L. Brun, and M. Pouzet, “Mechanized semantics and verified compilation for a
dataflow synchronous language with reset,” Models, Algorithms, and Proofs for **Mechanized
Semantics and Verified Compilation for a Dataflow Synchronous Language with Reset", vol. 4,
no. Popl, pp. 1-29, Dec. 2019, doi: 10.1145/3371112.

T. Bourke, P. Jeanmaire, B. Pesin, and M. Pouzet, “Verified LusTRE Normalization with
Node Subsampling,” ACM Trans. Embed. Comput. Syst., vol. 20, no. 5s, Sep. 2021, doi:
10.1145/3477041.

T. Bourke, B. Pesin, and M. Pouzet, “Verified Compilation of Synchronous Dataflow with
State Machines,” ACM Transactions on Embedded Computing Systems, vol. 22, no. 5s, pp. 1-
26, Sep. 2023, doi: 10.1145/3608102.

N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, “The synchronous data flow program-
ming language LUSTRE,” Proceedings of the IEEE, vol. 79, no. 9, pp. 1305-1320, 1991, doi:
10.1109/5.97300.

X. Leroy, “Formal verification of a realistic compiler,” Commun. ACM, vol. 52, no. 7, Jul. 2009,
doi: 10.1145/1538788.1538814.

Inria, CNRS, and contributors, “Reference manual of the Rocq Prover” 2024. [Online].
Available: https://rocq-prover.org/doc/V9.0.0/refman/index.html

L. Brun, “Mechanized Semantics and Verified Compilation for a Dataflow Synchronous
Language with Reset,” 2020. [Online]. Available: https://www.leliobrun.net/files/thesis.pdf

B. Pesin, “Verified Compilation of a Synchronous Dataglow Language with State Machines,”
2023. [Online]. Available: https://velus.inria.fr/phd-pesin/thesis.pdf

P. Jeanmaire, “Une sémantique dénotationnelle pour un compilateur synchrone vérifié,”
2024. [Online]. Available: https://velus.inria.fr/phd-jeanmaire/these.pdf

H. Kanabar, K. Korban, and M. O. Myreen, “Verified Inlining and Specialisation for
PureCake,” in Programming Languages and Systems, S. Weirich, Ed., Cham: Springer Nature
Switzerland, 2024, pp. 275-301. doi: 10.1007/978-3-031-57267-8_11.

D. Biernacki, J.-L. Colaco, G. Hamon, and M. Pouzet, “Clock-directed modular code gener-
ation for synchronous data-flow languages,” SIGPLAN Not., vol. 43, no. 7, pp. 121-130, Jun.
2008, doi: 10.1145/1379023.1375674.

J.-L. Colaco, B. Pagano, and M. Pouzet, “Scade 6: A Formal Language for Embedded
Critical Software Development,” in Eleventh International Symposium on Theoretical Aspect
of Software Engineering (TASE), Sophia Antipolis, France, Sep. 2017.

P. Caspi and M. Pouzet, “Lucid Synchrone: une extension fonctionnelle de LUSTRE,” in
Journées Francophones des Langages Applicatifs (JFLA), Avoriaz, France: Inria, Feb. 1999.
[Online]. Available: https://hal.science/hal-01574464

E. Jahier, P. Raymond, and N. Halbwachs, “The LUSTRE V6 Reference Manual.” 2020.

G. Hamon and M. Pouzet, “Modular resetting of synchronous data-flow programs,” pp. 289—
300, 2000, doi: 10.1145/351268.351300.

Page 28 on 29


https://doi.org/10.1145/3140587.3062358
https://doi.org/10.1145/3371112
https://doi.org/10.1145/3477041
https://doi.org/10.1145/3608102
https://doi.org/10.1109/5.97300
https://doi.org/10.1145/1538788.1538814
https://rocq-prover.org/doc/V9.0.0/refman/index.html
https://www.leliobrun.net/files/thesis.pdf
https://velus.inria.fr/phd-pesin/thesis.pdf
https://velus.inria.fr/phd-jeanmaire/these.pdf
https://doi.org/10.1007/978-3-031-57267-8_11
https://doi.org/10.1145/1379023.1375674
https://hal.science/hal-01574464
https://doi.org/10.1145/351268.351300

[BBP18]

[BP13]

T. Bourke, L. Brun, and M. Pouzet, “Towards a verified LUSTRE compiler with modular reset,”
in Proceedings of the 21st International Workshop on Software and Compilers for Embedded
Systems, in Scopes '18. Sankt Goar, Germany: Association for Computing Machinery, 2018,
pp- 14-17. doi: 10.1145/3207719.3207732.

T. Bourke and M. Pouzet, “Zélus: A Synchronous Language with ODEs,” in 16th International
Conference on Hybrid Systems: Computation and Control (HSCC'13), Philadelphia, USA, Mar.
2013, pp. 113-118. [Online]. Available: http://www.di.ens.fr/~pouzet/bib/hscc13.pdf

Page 29 on 29


https://doi.org/10.1145/3207719.3207732
http://www.di.ens.fr/~pouzet/bib/hscc13.pdf

	General context
	Research problem
	Your contribution
	Arguments supporting its validity
	Summary and future work
	Context
	Lustre/SCADE
	Vélus
	NLustre
	Syntax
	Clocks
	Equations
	Reset signals

	Variable names

	Node inlining
	Description
	Implementation
	Location
	Which equations to inline
	High-level description
	Precise implementation


	Correctness of the node inlining
	Syntactic properties
	Presentation
	Proofs

	Typing preservation
	Presentation
	Proofs

	Semantics preservation
	Presentation
	Proof overview
	Lift reset
	Properties overview
	Existence of a history H'
	Proof of sem_equation_lift_reset



	Conclusion
	Appendixes
	Full paths of source files
	Lustre syntax
	sin/cos program
	Usage of map2_left in inline_equation
	Existential variables of sem_equation
	Presentation
	From syntactic to semantics reset signals
	Changes in the proof in the case App

	reset, fby, doreset, and hold functions

	Bibliography

