
Context Node inlining Correctness of the node inlining Conclusion Appendix

Inlining in a Verified Synchronous Language Compiler

Balthazar Patiachvili, supervised by Timothy Bourke
in the PARKAS team at INRIA Paris

10/09/2025

Balthazar Patiachvili Inlining in a Verified Synchronous Language Compiler 1 / 26



Context Node inlining Correctness of the node inlining Conclusion Appendix

Outline

Context

Node inlining

Correctness of the node inlining

Conclusion

Appendix

Balthazar Patiachvili Inlining in a Verified Synchronous Language Compiler 2 / 26



Context Node inlining Correctness of the node inlining Conclusion Appendix

Lustre/SCADE

Lustre[1]

Formally defined[2] synchronous dataflow programming language for reactive systems
Introduced in the 1980s

[1]N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, “The synchronous data flow programming language LUSTRE,” Proceedings of the IEEE, vol. 79, no. 9, pp. 1305–1320, 1991,
doi: 10.1109/5.97300.

[2]E. Jahier, P. Raymond, and N. Halbwachs, “The Lustre V6 Reference Manual.” 2020.

Balthazar Patiachvili Inlining in a Verified Synchronous Language Compiler 3 / 26

https://doi.org/10.1109/5.97300


Context Node inlining Correctness of the node inlining Conclusion Appendix

Lustre/SCADE

Lustre[1]

Formally defined[2] synchronous dataflow programming language for reactive systems
Introduced in the 1980s

SCADE
Certified industrial environment developed by Esterel Technologies/Ansys
Derived from Lustre with new features inspired by other synchronous languages

[1]N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, “The synchronous data flow programming language LUSTRE,” Proceedings of the IEEE, vol. 79, no. 9, pp. 1305–1320, 1991,
doi: 10.1109/5.97300.

[2]E. Jahier, P. Raymond, and N. Halbwachs, “The Lustre V6 Reference Manual.” 2020.

Balthazar Patiachvili Inlining in a Verified Synchronous Language Compiler 3 / 26

https://doi.org/10.1109/5.97300


Context Node inlining Correctness of the node inlining Conclusion Appendix

Vélus

Introduction
Verified compiler in Rocq/OCaml from a synchronous dataflow language to Clight
Introduced in 2016[1], three theses[2][3][4] in the PARKAS team at INRIA Paris.

[1]T. Bourke, L. Brun, P.-É. Dagand, X. Leroy, M. Pouzet, and L. Rieg, “A formally verified compiler for Lustre,” SIGPLAN Not., vol. 52, no. 6, pp. 586–601, Jun. 2017, doi:
10.1145/3140587.3062358.

[2]L. Brun, “Mechanized Semantics and Verified Compilation for a Dataflow Synchronous Language with Reset,” 2020. [Online].  Available: https://www.leliobrun.net/files/thesis.
pdf

[3]B. Pesin, “Verified Compilation of a Synchronous Dataglow Language with State Machines,” 2023. [Online].  Available: https://velus.inria.fr/phd-pesin/thesis.pdf
[4]P. Jeanmaire, “Une sémantique dénotationnelle pour un compilateur synchrone vérifié,” 2024. [Online].  Available: https://velus.inria.fr/phd-jeanmaire/these.pdf
[5]D. Biernacki, J.-L. Colaço, G. Hamon, and M. Pouzet, “Clock-directed modular code generation for synchronous data-flow languages,” SIGPLAN Not., vol. 43, no. 7, pp. 121–130,

Jun. 2008, doi: 10.1145/1379023.1375674.

Balthazar Patiachvili Inlining in a Verified Synchronous Language Compiler 4 / 26

https://doi.org/10.1145/3140587.3062358
https://www.leliobrun.net/files/thesis.pdf
https://www.leliobrun.net/files/thesis.pdf
https://velus.inria.fr/phd-pesin/thesis.pdf
https://velus.inria.fr/phd-jeanmaire/these.pdf
https://doi.org/10.1145/1379023.1375674


Context Node inlining Correctness of the node inlining Conclusion Appendix

Vélus

Introduction
Verified compiler in Rocq/OCaml from a synchronous dataflow language to Clight
Introduced in 2016[1], three theses[2][3][4] in the PARKAS team at INRIA Paris.

Lustre ⊑ Vélus Lustre ⊑ SCADE 6
Modular compilation scheme[5]

[1]T. Bourke, L. Brun, P.-É. Dagand, X. Leroy, M. Pouzet, and L. Rieg, “A formally verified compiler for Lustre,” SIGPLAN Not., vol. 52, no. 6, pp. 586–601, Jun. 2017, doi:
10.1145/3140587.3062358.

[2]L. Brun, “Mechanized Semantics and Verified Compilation for a Dataflow Synchronous Language with Reset,” 2020. [Online].  Available: https://www.leliobrun.net/files/thesis.
pdf

[3]B. Pesin, “Verified Compilation of a Synchronous Dataglow Language with State Machines,” 2023. [Online].  Available: https://velus.inria.fr/phd-pesin/thesis.pdf
[4]P. Jeanmaire, “Une sémantique dénotationnelle pour un compilateur synchrone vérifié,” 2024. [Online].  Available: https://velus.inria.fr/phd-jeanmaire/these.pdf
[5]D. Biernacki, J.-L. Colaço, G. Hamon, and M. Pouzet, “Clock-directed modular code generation for synchronous data-flow languages,” SIGPLAN Not., vol. 43, no. 7, pp. 121–130,

Jun. 2008, doi: 10.1145/1379023.1375674.

Balthazar Patiachvili Inlining in a Verified Synchronous Language Compiler 4 / 26

https://doi.org/10.1145/3140587.3062358
https://www.leliobrun.net/files/thesis.pdf
https://www.leliobrun.net/files/thesis.pdf
https://velus.inria.fr/phd-pesin/thesis.pdf
https://velus.inria.fr/phd-jeanmaire/these.pdf
https://doi.org/10.1145/1379023.1375674


Context Node inlining Correctness of the node inlining Conclusion Appendix

Vélus
Lustre program / global environment
List of nodes, type and external function declarations.

count_up

inc

sum

mean

0

1

fby

+

/fby +

inc 1 3 5 2 6 4 ...
n 1 2 3 4 5 6 ...

sum 1 4 9 11 17 21 ...
mean 1 2 3 2.75 3.4 3.5 ...

Balthazar Patiachvili Inlining in a Verified Synchronous Language Compiler 5 / 26



Context Node inlining Correctness of the node inlining Conclusion Appendix

Vélus

Lustre program / global environment
List of nodes, type and external function declarations.

1 node count_up(inc : int) lustre
2 returns (sum : int; mean : float);
3 var n : int;
4 let
5   mean = sum / n;
6   n = (0 fby n) + 1;
7   sum = (0 fby sum) + inc;
8 tel

inc 1 3 5 2 6 4 ...
n 1 2 3 4 5 6 ...

sum 1 4 9 11 17 21 ...
mean 1 2 3 2.75 3.4 3.5 ...

Balthazar Patiachvili Inlining in a Verified Synchronous Language Compiler 5 / 26



Context Node inlining Correctness of the node inlining Conclusion Appendix

Vélus

Lustre program / global environment
List of nodes, type and external function declarations.

1 node count_up(inc : int) lustre
2 returns (sum : int; mean : float);
3 var n : int;
4 let
5   mean = sum / n;
6   n = (0 fby n) + 1;
7   sum = (0 fby sum) + inc;
8 tel

inc 1 3 5 2 6 4 ...
0 fby n 0 1 2 3 4 5 ...

n 1 2 3 4 5 6 ...
0 fby sum 0 1 4 9 11 17 ...

sum 1 4 9 11 17 21 ...
mean 1 2 3 2.75 3.4 3.5 ...

Balthazar Patiachvili Inlining in a Verified Synchronous Language Compiler 5 / 26



Context Node inlining Correctness of the node inlining Conclusion Appendix

Vélus

Architecture

Lustre

NLustreStc

CompCert

Parsing Completion
State
machines Switch blocks Local blocks Unnesting last normElaboration

Dependency analysis

Expression inlining
Dead equation
eliminationfby minimization

Transcription
Cutting
update cyclesScheduling i-translation

s-translation

Generation Compilation

Untyped
Lustre

Obc Clight Assembly

Balthazar Patiachvili Inlining in a Verified Synchronous Language Compiler 6 / 26



Context Node inlining Correctness of the node inlining Conclusion Appendix

Vélus

Architecture

Lustre

NLustreStc

CompCert

Parsing Completion
State
machines Switch blocks Local blocks Unnesting last normElaboration

Dependency analysis

Node inliningExpression inlining
Dead equation
eliminationfby minimization

Transcription
Cutting
update cyclesScheduling i-translation

s-translation

Generation Compilation

Untyped
Lustre

Obc Clight Assembly

Balthazar Patiachvili Inlining in a Verified Synchronous Language Compiler 6 / 26



Context Node inlining Correctness of the node inlining Conclusion Appendix

NLustre
Normalized Lustre
Intermediate language with much simpler syntax than Lustre.

Balthazar Patiachvili Inlining in a Verified Synchronous Language Compiler 7 / 26



Context Node inlining Correctness of the node inlining Conclusion Appendix

NLustre
Normalized Lustre
Intermediate language with much simpler syntax than Lustre.

Equations
𝑒𝑞𝑢 ⩴ 𝑥 = 𝑒 (Def)

| 𝑥 =𝑟𝑠 𝑐 fby 𝑒 (Fby)

| last 𝑥 =𝑟𝑠 𝑐 (Last)

| 𝑥+ =𝑟𝑠 𝑓(𝑒+) (App)

Node
1 Record node : Type := mk_node { Rocq
2   n_name   : ident;
3   n_in     : list (ident * (type * clock));
4   n_out    : list (ident * (type * clock));
5   n_vars   : list (ident * (type * clock * bool));
6   n_eqs    : list equation;
7 }.

Balthazar Patiachvili Inlining in a Verified Synchronous Language Compiler 7 / 26



Context Node inlining Correctness of the node inlining Conclusion Appendix

NLustre
Normalized Lustre
Intermediate language with much simpler syntax than Lustre.

Equations
𝑒𝑞𝑢 ⩴ 𝑥 = 𝑒 (Def)

| 𝑥 =𝑟𝑠 𝑐 fby 𝑒 (Fby)

| last 𝑥 =𝑟𝑠 𝑐 (Last)

| 𝑥+ =𝑟𝑠 𝑓(𝑒+) (App)

Node
1 Record node : Type := mk_node { Rocq
2   n_name   : ident;
3   n_in     : list (ident * (type * clock));
4   n_out    : list (ident * (type * clock));
5   n_vars   : list (ident * (type * clock * bool));
6   n_eqs    : list equation;
7 }.

1 node count_up(inc : int) lustre
2 returns (sum : int; mean : float);
3 var n : int;
4 let mean = sum / n;
5     n = (0 fby n) + 1;
6     sum = (0 fby sum) + inc;
7 tel

n_name := "count_up"
n_in := [inc]
n_out := [sum, mean]
n_vars := [n]
n_eqs := [TODO, ...]

Balthazar Patiachvili Inlining in a Verified Synchronous Language Compiler 7 / 26



Context Node inlining Correctness of the node inlining Conclusion Appendix

NLustre
Reset signals

The equations (Fby), (Last) and (App) “store” actively the current state of its variables.
It is possible through reset signals to enforce the value of the variables as if it were again
the first instant of the equation.

Balthazar Patiachvili Inlining in a Verified Synchronous Language Compiler 8 / 26



Context Node inlining Correctness of the node inlining Conclusion Appendix

NLustre
Reset signals

The equations (Fby), (Last) and (App) “store” actively the current state of its variables.
It is possible through reset signals to enforce the value of the variables as if it were again
the first instant of the equation.

1 node count_up(inc : int) nlustre
2 returns (sum : int; mean : float);
3 var n : int;
4 let mean = sum / n;
5     n = (0 fby n) + 1;
6     sum = (0 fby sum) + inc;
7 tel
8
9 node foo(x : int; rs : bool)
10 returns (sum : int; mean : float);
11 let (sum, mean) = reset count_up(x) every rs;
12 tel

x 1 5 3 2 6 4 8 ...
rs F F T F T F F ...

sum 1 6 3 5 6 10 18 ...
mean 1 3 3 2.5 6 5 6 ...

Balthazar Patiachvili Inlining in a Verified Synchronous Language Compiler 8 / 26



Context Node inlining Correctness of the node inlining Conclusion Appendix

NLustre
Reset signals

The equations (Fby), (Last) and (App) “store” actively the current state of its variables.
It is possible through reset signals to enforce the value of the variables as if it were again
the first instant of the equation.

1 node count_up(inc : int) nlustre
2 returns (sum : int; mean : float);
3 var n : int;
4 let mean = sum / n;
5     n = (0 fby n) + 1;
6     sum = (0 fby sum) + inc;
7 tel
8
9 node foo(x : int; rs : bool)
10 returns (sum : int; mean : float);
11 let (sum, mean) = reset count_up(x) every rs;
12 tel

x 1 5 3 2 6 4 8 ...
rs F F T F T F F ...

𝐦𝐚𝐬𝐤0 𝐬𝐮𝐦 1 6 11 ...
𝐦𝐚𝐬𝐤1 𝐬𝐮𝐦 3 5 17 ...
𝐦𝐚𝐬𝐤2 𝐬𝐮𝐦 6 10 18 ...

sum 1 6 3 5 6 10 18 ...

Balthazar Patiachvili Inlining in a Verified Synchronous Language Compiler 8 / 26



Context Node inlining Correctness of the node inlining Conclusion Appendix

Outline

Context

Node inlining

Correctness of the node inlining

Conclusion

Appendix

Balthazar Patiachvili Inlining in a Verified Synchronous Language Compiler 9 / 26



Context Node inlining Correctness of the node inlining Conclusion Appendix

Description

Node inlining
Inline expansion of nodes
Manual or compiler optimization that replace a node call with the body of the called node.
This internship: defined on resettable stream functions.

Balthazar Patiachvili Inlining in a Verified Synchronous Language Compiler 10 / 26



Context Node inlining Correctness of the node inlining Conclusion Appendix

Description

Node inlining
Inline expansion of nodes
Manual or compiler optimization that replace a node call with the body of the called node.
This internship: defined on resettable stream functions.

Usages
May reduce worst-case execution time
Increases the number of programs that can be compiled by Vélus

Balthazar Patiachvili Inlining in a Verified Synchronous Language Compiler 10 / 26



Context Node inlining Correctness of the node inlining Conclusion Appendix

Implementation
Where?
Two possibilities:

In Lustre, between the compilation of switch blocks and local blocks
In NLustre, before the expression inlining

Lustre

NLustreStc

CompCert

Parsing Completion
State
machines Switch blocks Local blocks Unnesting last normElaboration

Dependency analysis

Expression inlining
Dead equation
eliminationfby minimization

Transcription
Cutting
update cyclesScheduling i-translation

s-translation

Generation Compilation

Untyped
Lustre

Obc Clight Assembly

Balthazar Patiachvili Inlining in a Verified Synchronous Language Compiler 11 / 26



Context Node inlining Correctness of the node inlining Conclusion Appendix

Implementation
Where?
Two possibilities:

In Lustre, between the compilation of switch blocks and local blocks
In NLustre, before the expression inlining

Lustre

NLustreStc

CompCert

Parsing Completion
State
machines Switch blocks Local blocks Unnesting last normElaboration

Dependency analysis

Node inliningExpression inlining
Dead equation
eliminationfby minimization

Transcription
Cutting
update cyclesScheduling i-translation

s-translation

Generation Compilation

Untyped
Lustre

Obc Clight Assembly

Choice: NLustre for the small number of expressions

Balthazar Patiachvili Inlining in a Verified Synchronous Language Compiler 11 / 26



Context Node inlining Correctness of the node inlining Conclusion Appendix

Implementation

1 node foo( a: int; b: int ) nlustre

2 returns ( c: int; d: int );

3 var t: bool;
4 let

5   t = true fby (not t) ;

6   c = a + b ;

7   d = reset (0 fby (d + c)) every t ;

8 tel
9
10 node bar(x, y: int; rs: bool)
11 returns (z: int);
12 var t, u: int;
13 let

14   ( u, t ) = reset  foo( x + 1, y * 3 ) every rs ;

15   z = t + u;
16 tel

1 node bar(x, y: int; rs: bool) nlustre
2 returns (z: int);
3 var t, u: int;
4     a', b', c', d', t': int;
5 let

6   t' =  reset  true fby (not t')  every rs ;

7   c' = a' + b' ;
}}
}
}} Renamed

equations

8   d' = reset 0 fby (d' + c') every t' , rs ;

9   a' = x + 1 ;
} Input

equations10   b' = y * 3 ;

11   u = c' ;
} Output

equations12   t = d' ;

13   z = t + u; } Kept equation

14 tel

Balthazar Patiachvili Inlining in a Verified Synchronous Language Compiler 12 / 26



Context Node inlining Correctness of the node inlining Conclusion Appendix

Outline

Context

Node inlining

Correctness of the node inlining

Conclusion

Appendix

Balthazar Patiachvili Inlining in a Verified Synchronous Language Compiler 13 / 26



Context Node inlining Correctness of the node inlining Conclusion Appendix

Introduction

Goal
Reestablish compiler correctness with node inlining pass

Balthazar Patiachvili Inlining in a Verified Synchronous Language Compiler 14 / 26



Context Node inlining Correctness of the node inlining Conclusion Appendix

Introduction

Goal
Reestablish compiler correctness with node inlining pass

Required properties
Syntactic properties
Typing preservation
Clock-typing preservation
Semantics preservation

Balthazar Patiachvili Inlining in a Verified Synchronous Language Compiler 14 / 26



Context Node inlining Correctness of the node inlining Conclusion Appendix

Syntactic properties

Presentation
Syntactic properties are contained in a node definition
Only hypotheses available in the proofs: syntactic properties of the old node

⤷ Semantic properties cannot be used

1 Record node {prefs : PS.t} : Type := mk_node { Rocq
2   n_name      : ident;                                 (* name *)
3   n_in        : list (ident * (type * clock));         (* inputs *)
4   n_out       : list (ident * (type * clock));         (* outputs *)
5   n_vars      : list (ident * (type * clock * bool));  (* local variables *)
6   n_eqs       : list equation;                         (* equations *)
7   ... (* Syntactic properties *)
8 }.

Balthazar Patiachvili Inlining in a Verified Synchronous Language Compiler 15 / 26



Context Node inlining Correctness of the node inlining Conclusion Appendix

Syntactic properties
Properties

n_ingt0 : Goal 0 < length n_in

n_outgt0 : Goal 0 < length n_out

n_defd : Permutation (vars_defined n_eqs) (n_vars ++ n_out)

n_lastd1 : Permutation (last_defined n_eqs) (filter islast n_vars)

n_lastd2 : ∀ x, x ∈ n_vars ⟹ islast x ⟹ x ∈ vars_defined (filter is_def_cexp n_eqs)

n_vout : ∀ out, out ∈ n_out ⟹ out ∉ vars_defined (filter is_fby n_eqs)

n_nodup : NoDup (n_in ++ n_vars ++ n_out)

n_good : ∀ x ∈ (n_in ++ n_vars ++ n_out), AtomOrGensym prefs x ∧ atom n_name

Balthazar Patiachvili Inlining in a Verified Synchronous Language Compiler 16 / 26



Context Node inlining Correctness of the node inlining Conclusion Appendix

Syntactic properties
Properties

n_ingt0 : Goal 0 < length n_in

n_outgt0 : Goal 0 < length n_out

n_defd : Permutation (vars_defined n_eqs) (n_vars ++ n_out)

n_lastd1 : Permutation (last_defined n_eqs) (filter islast n_vars)

n_lastd2 : ∀ x, x ∈ n_vars ⟹ islast x ⟹ x ∈ vars_defined (filter is_def_cexp n_eqs)

n_vout : ∀ out, out ∈ n_out ⟹ out ∉ vars_defined (filter is_fby n_eqs)

n_nodup : NoDup (n_in ++ n_vars ++ n_out)

n_good : ∀ x ∈ (n_in ++ n_vars ++ n_out), AtomOrGensym prefs x ∧ atom n_name

Proofs
n_ingt0, n_outgt0: immediate
n_defd, n_lastd1, n_lastd2, n_nodup: proof for one equation then by induction on n_eqs
n_vout: induced by n_nodup
n_good: immediate after a little change in the definition of node

Balthazar Patiachvili Inlining in a Verified Synchronous Language Compiler 16 / 26



Context Node inlining Correctness of the node inlining Conclusion Appendix

Typing preservation

Presentation
Γ ⊢wt 𝑒 (𝑒 is well-typed in Γ) iff every variable 𝑥 of type 𝜏  in 𝑒 satisfies (𝑥, 𝜏) ∈ Γ.
A node 𝑛 is well-typed iff:

every equation is well-typed in Γ ≔ n_in ++ n_out ++ n_vars and in its program;
each type of n_in, n_out or n_vars is int, float or an existing enumeration;

Balthazar Patiachvili Inlining in a Verified Synchronous Language Compiler 17 / 26



Context Node inlining Correctness of the node inlining Conclusion Appendix

Typing preservation

Presentation
Γ ⊢wt 𝑒 (𝑒 is well-typed in Γ) iff every variable 𝑥 of type 𝜏  in 𝑒 satisfies (𝑥, 𝜏) ∈ Γ.
A node 𝑛 is well-typed iff:

every equation is well-typed in Γ ≔ n_in ++ n_out ++ n_vars and in its program;
each type of n_in, n_out or n_vars is int, float or an existing enumeration;
each variable of each clock type of n_in, n_out or n_vars is well-typed.

Balthazar Patiachvili Inlining in a Verified Synchronous Language Compiler 17 / 26



Context Node inlining Correctness of the node inlining Conclusion Appendix

Typing preservation

Presentation
Γ ⊢wt 𝑒 (𝑒 is well-typed in Γ) iff every variable 𝑥 of type 𝜏  in 𝑒 satisfies (𝑥, 𝜏) ∈ Γ.
A node 𝑛 is well-typed iff:

every equation is well-typed in Γ ≔ n_in ++ n_out ++ n_vars and in its program;
each type of n_in, n_out or n_vars is int, float or an existing enumeration;
each variable of each clock type of n_in, n_out or n_vars is well-typed.

A program is well-typed if every node is well-typed with no duplicate name.

Balthazar Patiachvili Inlining in a Verified Synchronous Language Compiler 17 / 26



Context Node inlining Correctness of the node inlining Conclusion Appendix

Typing preservation

Presentation
Γ ⊢wt 𝑒 (𝑒 is well-typed in Γ) iff every variable 𝑥 of type 𝜏  in 𝑒 satisfies (𝑥, 𝜏) ∈ Γ.
A node 𝑛 is well-typed iff:

every equation is well-typed in Γ ≔ n_in ++ n_out ++ n_vars and in its program;
each type of n_in, n_out or n_vars is int, float or an existing enumeration;
each variable of each clock type of n_in, n_out or n_vars is well-typed.

A program is well-typed if every node is well-typed with no duplicate name.

Goal: program well-typed before inlining ⟹ program well-typed after inlining

Balthazar Patiachvili Inlining in a Verified Synchronous Language Compiler 17 / 26



Context Node inlining Correctness of the node inlining Conclusion Appendix

Typing preservation

Proofs
Renaming variables preserves typing:

Γ ⊢wt 𝑒
𝜎(Γ) ⊢wt 𝜎(𝑒)

Balthazar Patiachvili Inlining in a Verified Synchronous Language Compiler 18 / 26



Context Node inlining Correctness of the node inlining Conclusion Appendix

Typing preservation

Proofs
Renaming variables preserves typing:

Γ ⊢wt 𝑒
𝜎(Γ) ⊢wt 𝜎(𝑒)

Complete proof scheme: induction on the list of nodes [𝑛0, …, 𝑛𝑘] of the program 𝐺

𝑛0 𝑛1 … 𝑛𝑘 𝑛𝑘+1

Well-typed nodes

G

𝑛′
0 𝑛′

1 … 𝑛′
𝑘 𝑛′

𝑘+1node_inlining(G)

Well-typed nodes

Balthazar Patiachvili Inlining in a Verified Synchronous Language Compiler 18 / 26



Context Node inlining Correctness of the node inlining Conclusion Appendix

Semantics preservation
Streams
Two equivalent[1] definitions: indexed and coinductive.

Here, only the indexed definition is used.

1 Definition stream (A : Type) := nat -> A. (* Indexed streams *) Rocq

[1]L. Brun, “Mechanized Semantics and Verified Compilation for a Dataflow Synchronous Language with Reset,” 2020. [Online].  Available: https://www.leliobrun.net/files/thesis.
pdf

Balthazar Patiachvili Inlining in a Verified Synchronous Language Compiler 19 / 26

https://www.leliobrun.net/files/thesis.pdf
https://www.leliobrun.net/files/thesis.pdf


Context Node inlining Correctness of the node inlining Conclusion Appendix

Semantics preservation
Streams
Two equivalent[1] definitions: indexed and coinductive.

Here, only the indexed definition is used.

1 Definition stream (A : Type) := nat -> A. (* Indexed streams *) Rocq

Environment and histories

1 Inductive svalue : Type := absent | present (v : value). Rocq
2 Definition env : Type := ident -> option svalue.
3 Definition history : Type := stream env.

[1]L. Brun, “Mechanized Semantics and Verified Compilation for a Dataflow Synchronous Language with Reset,” 2020. [Online].  Available: https://www.leliobrun.net/files/thesis.
pdf

Balthazar Patiachvili Inlining in a Verified Synchronous Language Compiler 19 / 26

https://www.leliobrun.net/files/thesis.pdf
https://www.leliobrun.net/files/thesis.pdf


Context Node inlining Correctness of the node inlining Conclusion Appendix

Semantics preservation
Streams
Two equivalent[1] definitions: indexed and coinductive.

Here, only the indexed definition is used.

1 Definition stream (A : Type) := nat -> A. (* Indexed streams *) Rocq

Environment and histories

1 Inductive svalue : Type := absent | present (v : value). Rocq
2 Definition env : Type := ident -> option svalue.
3 Definition history : Type := stream env.

inc 1 3 5 2 6 4 ...
n 1 2 3 4 5 6 ...

sum 1 4 9 11 17 21 ...
mean 1 2 3 2.75 3.4 3.5 ...

[1]L. Brun, “Mechanized Semantics and Verified Compilation for a Dataflow Synchronous Language with Reset,” 2020. [Online].  Available: https://www.leliobrun.net/files/thesis.
pdf

Balthazar Patiachvili Inlining in a Verified Synchronous Language Compiler 19 / 26

https://www.leliobrun.net/files/thesis.pdf
https://www.leliobrun.net/files/thesis.pdf


Context Node inlining Correctness of the node inlining Conclusion Appendix

Semantics preservation
Semantics of a node
The semantics of an equation/a node are mutually recursive.

1 Inductive sem_node := Rocq
2   | SNode (* ... *) : (* ... *) ->
3     find_node f G = n ->
4     Forall (sem_equation (clock_of ins) H) n.(n_eqs) ->
5     sem_node G f ins outs.

1 Inductive sem_equation := Rocq
2   | SEqApp (* ... *) : (* ... *) ->
3     (∀ k, sem_node f (mask k rs ins) (mask k rs outs)) ->
4     sem_equation G bk H (xs =ck reset f(args) every rs)

Balthazar Patiachvili Inlining in a Verified Synchronous Language Compiler 20 / 26



Context Node inlining Correctness of the node inlining Conclusion Appendix

Semantics preservation
Semantics of a node
The semantics of an equation/a node are mutually recursive.

1 Inductive sem_node := Rocq
2   | SNode (* ... *) : (* ... *) ->
3     find_node f G = n ->
4     Forall (sem_equation (clock_of ins) H) n.(n_eqs) ->
5     sem_node G f ins outs.

1 Inductive sem_equation := Rocq
2   | SEqApp (* ... *) : (* ... *) ->
3     (∀ k, sem_node f (mask k rs ins) (mask k rs outs)) ->
4     sem_equation G bk H (xs =ck reset f(args) every rs)

1 Theorem node_inlining_sem (* ...*) : Rocq
2   wt_global G ->
3   sem_node G f ins outs ->
4   sem_node (node_inlining G) f ins outs.

Balthazar Patiachvili Inlining in a Verified Synchronous Language Compiler 20 / 26



Context Node inlining Correctness of the node inlining Conclusion Appendix

Semantics preservation

1 node f(wi, xi : int) returns (wo, xo : int); lustre
2 let
3   wo = wi + 1;
4   xo = wi * 4;
5 tel
6

7 node g( x  : int) returns ( y  : int);

8 var z  : int;

9 let (y, z) = f(x + 2, z + 3);
10 tel

1 node g( x  : int) returns ( y  : int); lustre

2 var wi', xi', wo', xo' , z  : int;

3 let
4   wo' = wi' + 1;
5   xo' = wi' * 4;
6   wi' = x + 2;
7   xi' = z + 3;
8   y = xo';
9   z = wo';
10 tel

1 Theorem node_inlining_sem (* ...*) : Rocq
2   wt_global G ->
3   sem_node G f ins outs ->
4   sem_node (node_inlining G) f ins outs.

H : [x, y, z]

H': [wi', xi', wo', xo']

Balthazar Patiachvili Inlining in a Verified Synchronous Language Compiler 21 / 26



Context Node inlining Correctness of the node inlining Conclusion Appendix

Semantics preservation

Lift reset
1 Inductive sem_node := Rocq
2   | SNode (* ... *) : (* ... *) ->
3     find_node f G = n ->
4     Forall (sem_equation (clock_of ins) H) n.(n_eqs) ->
5     sem_node G f ins outs.

1 Inductive sem_equation := Rocq
2   | SEqApp (* ... *) : (* ... *) ->
3     (∀ k, sem_node f (mask k rs ins) (mask k rs outs)) ->
4     sem_equation G bk H (xs =ck reset f(args) every rs)

x 1 5 3 2 6 4 8 ...
rs F F T F T F F ...

𝐦𝐚𝐬𝐤0 𝐬𝐮𝐦 1 6 11 ...
𝐦𝐚𝐬𝐤1 𝐬𝐮𝐦 3 5 17 ...
𝐦𝐚𝐬𝐤2 𝐬𝐮𝐦 6 10 18 ...

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ...
sum 1 6 3 5 6 10 18 ...

Balthazar Patiachvili Inlining in a Verified Synchronous Language Compiler 22 / 26



Context Node inlining Correctness of the node inlining Conclusion Appendix

Semantics preservation

Lift reset
1 Inductive sem_node := Rocq
2   | SNode (* ... *) : (* ... *) ->
3     find_node f G = n ->
4     Forall (sem_equation (clock_of ins) H) n.(n_eqs) ->
5     sem_node G f ins outs.

1 Inductive sem_equation := Rocq
2   | SEqApp (* ... *) : (* ... *) ->
3     (∀ k, sem_node f (mask k rs ins) (mask k rs outs)) ->
4     sem_equation G bk H (xs =ck reset f(args) every rs)

x 1 5 3 2 6 4 8 ...
rs F F T F T F F ...

𝐦𝐚𝐬𝐤0 𝐬𝐮𝐦 1 6 11 ...
𝐦𝐚𝐬𝐤1 𝐬𝐮𝐦 3 5 17 ...
𝐦𝐚𝐬𝐤2 𝐬𝐮𝐦 6 10 18 ...

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ...
sum 1 6 3 5 6 10 18 ...

1 Lemma sem_node_unmask (*...*) : Rocq
2   (∀ (k: nat), sem_node G f (mask k rs ins) (mask k rs outs)) ->
3   ∃ (H' : history), (* ... *)
4   ∧ Forall (sem_equation G bk H') (map (lift_reset rs) n.(n_eqs)).

Balthazar Patiachvili Inlining in a Verified Synchronous Language Compiler 22 / 26



Context Node inlining Correctness of the node inlining Conclusion Appendix

Semantics preservation

1 Definition lift_reset (rs : list ident) (eq : equation) : equation := Rocq
2   match eq with
3   | EqDef x ck e => EqDef x ck e
4   | EqLast x ty ck c rs' => EqLast x ty ck c (rs ++ rs')
5   | EqApp xs ck f args rs => EqApp xs ck f args (rs ++ rs')
6   | EqFby x ck c e rs => EqFby x ck c e (rs ++ rs')
7   end.

1 Lemma sem_node_unmask (*...*) : Rocq
2   (∀ (k: nat), sem_node G f (mask k rs ins) (mask k rs outs)) ->
3     ∃ (H' : history), (* ... *) ∧ Forall (sem_equation G bk H') (map (lift_reset rs) n.(n_eqs)).

Balthazar Patiachvili Inlining in a Verified Synchronous Language Compiler 23 / 26



Context Node inlining Correctness of the node inlining Conclusion Appendix

Semantics preservation

Semantics of an equation with a lift_reset
1 Lemma sem_equation_lift_reset (* ... *) : (* ... *) -> Rocq
2   (∀ (k : nat), sem_equation G (mask k rs bk) H' eq) ->
3     sem_equation G bk (H ⊎ H') (lift_reset rs eq).

Balthazar Patiachvili Inlining in a Verified Synchronous Language Compiler 24 / 26



Context Node inlining Correctness of the node inlining Conclusion Appendix

Semantics preservation

Semantics of an equation with a lift_reset
1 Lemma sem_equation_lift_reset (* ... *) : (* ... *) -> Rocq
2   (∀ (k : nat), sem_equation G (mask k rs bk) H' eq) ->
3     sem_equation G bk (H ⊎ H') (lift_reset rs eq).

Intuition : if an equation has a semantics on every mask delimited by reset signals rs, then
the same equation with a lifted reset rs has a semantics on the complete history.

Balthazar Patiachvili Inlining in a Verified Synchronous Language Compiler 24 / 26



Context Node inlining Correctness of the node inlining Conclusion Appendix

Outline

Context

Node inlining

Correctness of the node inlining

Conclusion

Appendix

Balthazar Patiachvili Inlining in a Verified Synchronous Language Compiler 25 / 26



Context Node inlining Correctness of the node inlining Conclusion Appendix

Conclusion

What has been done
Implementation of node inlining compilation pass
Syntactic proofs and typing preservation complete
Big part of semantics preservation done

Balthazar Patiachvili Inlining in a Verified Synchronous Language Compiler 26 / 26



Context Node inlining Correctness of the node inlining Conclusion Appendix

Conclusion

What has been done
Implementation of node inlining compilation pass
Syntactic proofs and typing preservation complete
Big part of semantics preservation done

What is remaining
Would it have been easier in Lustre?
Reestablish compiler correctness
Improve dependency analysis to be able to compile more Lustre programs

Balthazar Patiachvili Inlining in a Verified Synchronous Language Compiler 26 / 26



Context Node inlining Correctness of the node inlining Conclusion Appendix

Outline

Context

Node inlining

Correctness of the node inlining

Conclusion

Appendix

Balthazar Patiachvili Inlining in a Verified Synchronous Language Compiler 27 / 26



Context Node inlining Correctness of the node inlining Conclusion Appendix

Node inlining makes more programs compilable

1 node swap(x, y : int) returns (y2, x2 : int); lustre
2 let x2 = x;
3     y2 = y;
4 tel
5
6 node foo(x : int) returns (y : int);
7 var z : int;

8 let (y, z ) = swap(x, z );

9 tel

1 node foo(x : int) returns (y : int); lustre
2 var x', y', x2', y2', z : int;
3 let x2' = x';
4     y2' = y';
5     x' = x;
6     y' = z;
7     y = y2';
8     z = x2';
9 tel

Balthazar Patiachvili Inlining in a Verified Synchronous Language Compiler 28 / 26



Context Node inlining Correctness of the node inlining Conclusion Appendix

Node inlining makes more programs compilable

1 node swap(x, y : int) returns (y2, x2 : int); lustre
2 let x2 = x;
3     y2 = y;
4 tel
5
6 node foo(x : int) returns (y : int);
7 var z : int;

8 let (y, z ) = swap(x, z );

9 tel

1 node foo(x : int) returns (y : int); lustre
2 var x', y', x2', y2', z : int;
3 let x2' = x';
4     y2' = y';
5     x' = x;
6     y' = z;
7     y = y2';
8     z = x2';
9 tel

foo

swap

x y

Balthazar Patiachvili Inlining in a Verified Synchronous Language Compiler 28 / 26



Context Node inlining Correctness of the node inlining Conclusion Appendix

Node inlining makes more programs compilable

1 node swap(x, y : int) returns (y2, x2 : int); lustre
2 let x2 = x;
3     y2 = y;
4 tel
5
6 node foo(x : int) returns (y : int);
7 var z : int;

8 let (y, z ) = swap(x, z );

9 tel

1 node foo(x : int) returns (y : int); lustre
2 var x', y', x2', y2', z : int;
3 let x2' = x';
4     y2' = y';
5     x' = x;
6     y' = z;
7     y = y2';
8     z = x2';
9 tel

foo

swap

x y

Balthazar Patiachvili Inlining in a Verified Synchronous Language Compiler 28 / 26


	Context
	Lustre/SCADE
	Lustre
	SCADE
	Lustre
	SCADE

	Vélus
	Introduction
	Introduction
	Lustre program / global environment
	Lustre program / global environment
	Lustre program / global environment
	Architecture
	Architecture

	NLustre
	Equations
	Node
	Equations
	Node
	Equations
	Node
	Reset signals
	Reset signals
	Reset signals


	Node inlining
	Description
	Node inlining
	Usages
	Node inlining
	Usages

	Implementation
	Where?
	Where?


	Correctness of the node inlining
	Introduction
	Goal
	Required properties
	Goal
	Required properties

	Syntactic properties
	Presentation
	Properties
	Proofs
	Properties
	Proofs

	Typing preservation
	Presentation
	Presentation
	Presentation
	Presentation
	Proofs
	Proofs

	Semantics preservation
	Streams
	Environment and histories
	Streams
	Environment and histories
	Streams
	Environment and histories
	Semantics of a node
	Semantics of a node
	Lift reset
	Lift reset
	Semantics of an equation with a lift_reset
	Semantics of an equation with a lift_reset


	Conclusion
	Conclusion
	What has been done
	What is remaining
	What has been done
	What is remaining


	Appendix
	Node inlining makes more programs compilable


