Context Node inlining Correctness of the node inlining Conclusion Appendix

Inlining in a Verified Synchronous Language Compiler

BALTHAZAR PATIACHVILI, supervised by TIMOTHY BOURKE
in the PARKAS team at INRIA Paris

10/09/2025

BALTHAZAR PATIACHVILI Inlining in a Verified Synchronous Language Compiler

Context Node inlining Correctness of the node inlining Conclusion Appendix

Outline

Context

BALTHAZAR PATIACHVILI Inlining in a Verified Synchronous Language Compiler

Context Node inlining Correctness of the node inlining Conclusion Appendix

LusTRE/SCADE

LusTrEY

@ Formally defined!? synchronous dataflow programming language for reactive systems
@ Introduced in the 1980s

(UN. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, “The synchronous data flow programming language LUSTRE,” Proceedings of the IEEE, vol. 79, no. 9, pp. 1305-1320, 1991,
doi: 10.1109/5.97300.

BIE. Jahier, P. Raymond, and N. Halbwachs, “The LusTRE V6 Reference Manual” 2020.

BALTHAZAR PATIACHVILI Inlining in a Verified Synchronous Language Compiler

https://doi.org/10.1109/5.97300

Context Node inlining Correctness of the node inlining Conclusion Appendix

LusTRE/SCADE

LusTrEY

@ Formally defined!? synchronous dataflow programming language for reactive systems
@ Introduced in the 1980s

SCADE

@ Certified industrial environment developed by Esterel Technologies/Ansys
@ Derived from LusTRE with new features inspired by other synchronous languages

(UN. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, “The synchronous data flow programming language LUSTRE,” Proceedings of the IEEE, vol. 79, no. 9, pp. 1305-1320, 1991,
doi: 10.1109/5.97300.

BIE. Jahier, P. Raymond, and N. Halbwachs, “The LusTRE V6 Reference Manual” 2020.

BALTHAZAR PATIACHVILI Inlining in a Verified Synchronous Language Compiler

https://doi.org/10.1109/5.97300

Context Node inlining Correctness of the node inlining Conclusion Appendix

Introduction

@ Verified compiler in Rocq/OCAML from a synchronous dataflow language to CLIGHT
@ Introduced in 2016, three theses!?B4 in the PARKAS team at INRIA Paris.

(IT. Bourke, L. Brun, P.-E. Dagand, X. Leroy, M. Pouzet, and L. Rieg, “A formally verified compiler for LusTRg,” SIGPLAN Not., vol. 52, no. 6, pp. 586-601, Jun. 2017, doi:
10.1145/3140587.3062358.

(L. Brun, “Mechanized Semantics and Verified Compilation for a Dataflow Synchronous Language with Reset,” 2020. [Online]. Available: https://www.leliobrun.net/files/thesis.
pdf

BIB. Pesin, “Verified Compilation of a Synchronous Dataglow Language with State Machines,” 2023. [Online]. Available: https://velus.inria.fr/phd-pesin/thesis.pdf
“IP. Jeanmaire, “Une sémantique dénotationnelle pour un compilateur synchrone vérifié,” 2024. [Online]. Available: https://velus.inria.fr/phd-jeanmaire/these.pdf

GID. Biernacki, J.-L. Colago, G. Hamon, and M. Pouzet, “Clock-directed modular code generation for synchronous data-flow languages,” SIGPLAN Not., vol. 43, no. 7, pp. 121-130,
Jun. 2008, doi: 10.1145/1379023.1375674.

ZAR PATIACHVILI Inlining in a Verified Synchronous Language Compiler

https://doi.org/10.1145/3140587.3062358
https://www.leliobrun.net/files/thesis.pdf
https://www.leliobrun.net/files/thesis.pdf
https://velus.inria.fr/phd-pesin/thesis.pdf
https://velus.inria.fr/phd-jeanmaire/these.pdf
https://doi.org/10.1145/1379023.1375674

Context Node inlining Correctness of the node inlining Conclusion Appendix

Introduction

@ Verified compiler in Rocq/OCAML from a synchronous dataflow language to CLIGHT
@ Introduced in 2016, three theses!?B4 in the PARKAS team at INRIA Paris.

@ Lustre C Vélus Lustre T SCADE 6
@ Modular compilation schemel®

(IT. Bourke, L. Brun, P.-E. Dagand, X. Leroy, M. Pouzet, and L. Rieg, “A formally verified compiler for LusTRg,” SIGPLAN Not., vol. 52, no. 6, pp. 586-601, Jun. 2017, doi:
10.1145/3140587.3062358.

(L. Brun, “Mechanized Semantics and Verified Compilation for a Dataflow Synchronous Language with Reset,” 2020. [Online]. Available: https://www.leliobrun.net/files/thesis.
pdf

BIB. Pesin, “Verified Compilation of a Synchronous Dataglow Language with State Machines,” 2023. [Online]. Available: https://velus.inria.fr/phd-pesin/thesis.pdf
“IP. Jeanmaire, “Une sémantique dénotationnelle pour un compilateur synchrone vérifié,” 2024. [Online]. Available: https://velus.inria.fr/phd-jeanmaire/these.pdf

GID. Biernacki, J.-L. Colago, G. Hamon, and M. Pouzet, “Clock-directed modular code generation for synchronous data-flow languages,” SIGPLAN Not., vol. 43, no. 7, pp. 121-130,
Jun. 2008, doi: 10.1145/1379023.1375674.

ZAR PATIACHVILI Inlining in a Verified Synchronous Language Compiler

https://doi.org/10.1145/3140587.3062358
https://www.leliobrun.net/files/thesis.pdf
https://www.leliobrun.net/files/thesis.pdf
https://velus.inria.fr/phd-pesin/thesis.pdf
https://velus.inria.fr/phd-jeanmaire/these.pdf
https://doi.org/10.1145/1379023.1375674

Context Node inlining Correctness of the node inlining Conclusion Appendix

LUSTRE program / global environment

List of nodes, type and external function declarations.

~

0
) B

s inc [1(3]5] 2 |64

inc J n 111213] 4 | 5] 6
1) ——

sum |1]4|9] 11 |17 21

1121312.75(3.4(3.5

¥

4 l ~ mean mean
~E)—

count up

BALTHAZAR PATIACHVILI Inlining in a Verified Synchronous Language Compiler

Context Node inlining

Correctness of the node inlining Conclusion Appendix

LUSTRE program / global environment

List of nodes, type and external function declarations.

BALTHAZAR PATIACHVILI

1 node count up(inc : int)

2 returns (sum : int; mean :
3 var n : int;

4 let

5 mean = sum / n;

6 n=(0 fby n) + 1;

7 sum = (0 fby sum) + inc;
8 tel

float);

inc |[1|3|5] 2 | 6] 4

n |[1|2|(3] 4 |[5]6
sum [1|4]9| 11 |17]21
mean |1|2(3|2.75(3.4|3.5

Inlining in a Verified Synchronous Language Compiler

Context Node inlining

Correctness of the node inlining Conclusion Appendix

LUSTRE program / global environment

List of nodes, type and external function declarations.

1 node count up(inc : int)

2 returns (sum : int; mean : float);
3 var n : int;

4 let

5 mean = sum / n;

6 n=(0 fby n) + 1;

7 sum = (0 fby sum) + inc;

8 tel

BALTHAZAR PATIACHVILI

inc 1(3(5] 2 | 6| 4

O fby n |0|1|2] 3 | 4|5
n 112|131 4 | 5] 6

O fby sum|Of1({4 9 |11 |17
sum 1{4|9| 11 |17 |21
mean 1(2(3]2.75|3.4|3.5

Inlining in a Verified Synchronous Language Compiler

Context Node inlining

Correctness of the node inlining Conclusion

Appendix

Architecture
. leti State .
Parsing Untyped Elaboration Completion +. Switch blocks Local blocks Unnesting last norm
e e o o o e ———
LUSTRE !
[}
Dependency analysis LUSTRE
Transcription
' Cutting S Dead equation .
Scheduling update cycles i-translation, fby minimization elimination Expression inlining
o< 94 L L ® —
Stc NLUSTRE
s-translation
Generation Compilation
»| CLIGHT f------=--=--=----—--o-mommommooom oo ASSEMBLY
CompCert

BALTHAZAR PATIACHVILI

Inlining in a Verified Synchronous Language Compiler

Context

Node inlining

Correctness of the node inlining Conclusion

Appendix

Architecture
.) State .
Parsing Untyped Elaboration ~ Completion .. Switch blocks Local blocks Unnesting last norm
e e o o o e ———
LUSTRE !
[}
Dependency analysis LUSTRE
Transcription
Cutting Dead equation T
: , ' . T Node inl
Scheduling update cycles |i-translation| by minimization elimination Expression inlining [ode 1n 1n1ng]
L o L L ! ¢ o
Stc NLUSTRE
s-translation
Generation Compilation
| CLIGHT |[-----------------mmmmmmmmmmm oo ASSEMBLY
CompCert

BALTHAZAR PATIACHVILI

Inlining in a Verified Synchronous Language Compiler

Context Node inlining Correctness of the node inlining Conclusion Appendix

NLUSTRE
@ Normalized LUSTRE

@ Intermediate language with much simpler syntax than LUSTRE.

BALTHAZAR PATIACHVILI Inlining in a Verified Synchronous Language Compiler

Context Node inlining Correctness of the node inlining Conclusion Appendix

NLUSTRE
@ Normalized LUSTRE
@ Intermediate language with much simpler syntax than LUSTRE.

Equations Node
BQ’U, =L =€ (Def) 1 Record node : Type := mk node {
L :7“8 C fby € (Fby) i E:Z:me i(ij(::tiident * (type * clock));
last T :TS c (Last) ;1 n out I%St (%dent : (type : clock)i; |
n_vars : list (ident (type * clock * bool));
ZE+ = f(€+) (App) S }.n_eqs : list equation;

BALTHAZAR PATIACHVILI Inlining in a Verified Synchronous Language Compiler

Context Node inlining

NLUSTRE
@ Normalized LUSTRE
@ Intermediate language with much simpler syntax than LUSTRE.

Equations

equ == = e (Def)

x =,, ¢ fby e (Fby)

last x =, ¢ (Last)

f(e™) (App)

+ —

44 rs

int)

int; mean :

node count up(inc :

returns (sum : float);

var n : int;
let mean = sum / n;
(06 fby n) + 1;

(0 fby sum) + inc;

n =

N o U B WWN B

BALTHAZAR PATIACHVILI

Correctness of the node inlining Conclusion Appendix

Node
Record node : Type := mk node {
n_name : ident;

: list (ident * (type * clock));
: list (ident * (type * clock));

1

2

3 n_in
4 n out
5

6

7

n_vars : list (ident * (type * clock * bool));
n_eqgs : list equation;
}.
n_name := "count up"
n_in := [1inc]
n out := [sum, mean]
n vars :=[n]
n eqs := [TODO, ...]

Inlining in a Verified Synchronous Language Compiler

Context Node inlining Correctness of the node inlining Conclusion Appendix

NLUSTRE
Reset signals

@ The equations (Fby), (Last) and (App) “store” actively the current state of its variables.
@ It is possible through reset signals to enforce the value of the variables as if it were again
the first instant of the equation.

BALTHAZAR PATIACHVILI Inlining in a Verified Synchronous Language Compiler

Context Node inlining Correctness of the node inlining Conclusion Appendix

NLUSTRE
Reset signals

@ The equations (Fby), (Last) and (App) “store” actively the current state of its variables.
@ It is possible through reset signals to enforce the value of the variables as if it were again
the first instant of the equation.

1 node count_up(inc : int)

2 returns (sum : int; mean : float);

3 var n : int;

4 let mean = sum / n;

5 n= (0 fby n) + 1; X 11531 21(6|4]|8
6 sum = (0@ fby sum) + inc; Irs FIF|T|F |T|F|F
7 tel sum [1[6]|3]|5]|6|10(18
8

o mean|1|3(3(25(6|5]|6

node foo(x : int; rs : bool)

10 returns (sum : int; mean : float);

11 let (sum, mean) = reset count up(x) every rs;
12 tel

BALTHAZAR PATIACHVILI Inlining in a Verified Synchronous Language Compiler

Context Node inlining Correctness of the node inlining Conclusion Appendix

NLUSTRE
Reset signals

@ The equations (Fby), (Last) and (App) “store” actively the current state of its variables.
@ It is possible through reset signals to enforce the value of the variables as if it were again
the first instant of the equation.

1 node count_up(inc : int)
2 returns (sum : int; mean : float);
3:””*”“ X 1/5(3|2|61|4]8
4 et mean = sum / n;
s h oot 1, rs F|F|T|F|T|F|F
6 sum = (0 fby sum) + inc; masko sumi 1|6
7 tel mask! sum 315
8
| mask? sum 6 [10(18
9 node foo(x : int; rs : bool)
10 returns (sum : int; mean : float); sum 1 6 3 5 6 10 18

11 let (sum, mean) = reset count up(x) every rs;
12 tel

BALTHAZAR PATIACHVILI Inlining in a Verified Synchronous Language Compiler

Context Node inlining Correctness of the node inlining Conclusion Appendix

Outline

Node inlining

BALTHAZAR PATIACHVILI Inlining in a Verified Synchronous Language Compiler

Context Node inlining Correctness of the node inlining Conclusion Appendix

Description

Node inlining

@ Inline expansion of nodes

@ Manual or compiler optimization that replace a node call with the body of the called node.
@ This internship: defined on resettable stream functions.

BALTHAZAR PATIACHVILI Inlining in a Verified Synchronous Language Compiler

Context Node inlining Correctness of the node inlining Conclusion Appendix

Description

Node inlining

@ Inline expansion of nodes

@ Manual or compiler optimization that replace a node call with the body of the called node.
@ This internship: defined on resettable stream functions.

Usages

@ May reduce worst-case execution time
@ Increases the number of programs that can be compiled by Vélus

BALTHAZAR PATIACHVILI Inlining in a Verified Synchronous Language Compiler

Context Node inlining Correctness of the node inlining Conclusion Appendix

Implementation
Where?

Two possibilities:
@ In LUSTRE, between the compilation of switch blocks and local blocks
@ In NLUSTRE, before the expression inlining

State
Parsing Untvped Elaboration Completion e e Switch blocks Local blocks Unnesting last norm
- YP o . o e o e e
LUSTRE [
Dependency analysis LUSTRE }
Transcription
Cutting Dead equation
Scheduling i lati fby minimization d Expression inlining
update cycles |l-translation y elimination
L) L) 94 L) L0 ®
Stc J NLUSTRE

s-translation

Generation Compilation
| CLIGHT [---=--=--==-=--=---—---ommmmmmmmmmmmm oo ASSEMBLY
CompCert

BALTHAZAR PATIACHVILI Inlining in a Verified Synchronous Language Compiler

Context Node inlining Correctness of the node inlining Conclusion Appendix

Implementation
Where?

Two possibilities:
@ In LUSTRE, between the compilation of switch blocks and local blocks
@ In NLUSTRE, before the expression inlining

State

Parsing Untvped Elaboration Completion e e Switch blocks Local blocks Unnesting last norm

_ P ‘e e o e o e e
LUSTRE [
Dependency analysis LUSTRE }
Transcription
Cutting Dead equation OO
. . . s S P Node inlining
Scheduling e e s w i-translation| fby minimization elimination Expression inlining ()
4 L) L) 94 L4 o< L D <
Stc J NLUSTRE

s-translation

Generation Compilation
OBC | CLIGHT [---=--=--==-=--=---—---ommmmmmmmmmmmm oo ASSEMBLY
CompCert

Choice: NLUSTRE for the small number of expressions

BALTHAZAR PATIACHVILI Inlining in a Verified Synchronous Language Compiler

Context Node inlining Correctness of the node inlining Conclusion Appendix

Implementation

1 node foo([a: int; b: int})

1 node bar(x, y: int; rs: bool)
2 returns (,c: int; d: int)); 2 returns (z: int):
3 var t: bool; 3 wvar t, u: int;
4 et 4 a', b', c¢', d', t': int;
5 t """""""""""""""""""" 5 let
6 CLEE 6 it =iiresetiitrue fby (not t')::every rs;

.......................... equations

9 a' = x + 1); Input
10 node bar(x, y: int; rs: bool)

o * : equations
11 returns (z: int); 10 b y * 3J;

12 var t, u: int; 11 u=-c';
13 let

Output
equations

12 t=d'};

. | e :_
14 (u, t) = ireset! foo((x + 1, y * 3)) ievery rs: 13 z=t+u;

15 z =t + u; 14 tel
16 tel

Kept equation

ZAR PATIACHVILI Inlining in a Verified Synchronous Language Compiler

Context Node inlining Correctness of the node inlining Conclusion Appendix

Outline

Correctness of the node inlining

BALTHAZAR PATIACHVILI Inlining in a Verified Synchronous Language Compiler

Context Node inlining Correctness of the node inlining Conclusion Appendix

Introduction

Goal

Reestablish compiler correctness with node inlining pass

BALTHAZAR PATIACHVILI Inlining in a Verified Synchronous Language Compiler

Context Node inlining Correctness of the node inlining Conclusion Appendix

Introduction

Goal
Reestablish compiler correctness with node inlining pass

Required properties

@ Syntactic properties

@ Typing preservation

@ Clock-typing preservation
@ Semantics preservation

BALTHAZAR PATIACHVILI Inlining in a Verified Synchronous Language Compiler

Context Node inlining Correctness of the node inlining Conclusion Appendix

Syntactic properties

Presentation

@ Syntactic properties are contained in a node definition
@ Only hypotheses available in the proofs: syntactic properties of the old node

L, Semantic properties cannot be used

1 Record node {prefs : PS.t} : Type := mk node {
2 n_name : ident;

3 n_in : list (ident * (type * clock));

4 n_out : list (ident * (type * clock));

5 n_vars : list (ident * (type * clock * bool));

6 n_eqs : list equation;

7 .

8 }.

BALTHAZAR PATIACHVILI Inlining in a Verified Synchronous Language Compiler

Context Node inlining Correctness of the node inlining Conclusion Appendix

Syntactic properties

Properties
n ingtd : 0O < length n_in
n_outgt® : 0O < length n out
n defd : Permutation (vars defined n eqs) (n vars ++ n_out)

n_lastdl : Permutation (last defined n _eqs) (filter islast n _vars)
n lastd2 : V x, x € n_vars = islast x = x € vars _defined (filter is def cexp n_eqs)

n vout : VvV out, out € n out = out ¢ vars defined (filter is fby n_eqs)

n_nodup : NoDup (n_in ++ n_vars ++ n_out)

n good : VvV X € (n_in ++ n_vars ++ n_out), AtomOrGensym prefs x A atom n_name

BALTHAZAR PATIACHVILI Inlining in a Verified Synchronous Language Compiler

Context Node inlining Correctness of the node inlining Conclusion Appendix

Syntactic properties

Properties

n ingtd : 0O < length n_in

n_outgt® : 0O < length n out
n defd : Permutation (vars defined n eqs) (n vars ++ n_out)

n_lastdl : Permutation (last defined n _eqs) (filter islast n _vars)

n lastd2 : V x, x € n_vars = islast x = x € vars _defined (filter is def cexp n_eqs)
n vout : VvV out, out € n out = out ¢ vars defined (filter is fby n_eqs)

n_nodup : NoDup (n_in ++ n_vars ++ n_out)

n good : VvV X € (n_in ++ n_vars ++ n_out), AtomOrGensym prefs x A atom n_name

Proofs

@ n ingto, n outgte: immediate

@ n_defd, n_lastdl, n_lastd2, n_nodup: proof for one equation then by induction on n_eqs
@ n_vout: induced by n_nodup

@ n_good: immediate after a little change in the definition of node

BALTHAZAR PATIACHVILI Inlining in a Verified Synchronous Language Compiler

Context Node inlining Correctness of the node inlining Conclusion Appendix

Typing preservation

Presentation
@ I' ,, e (e is well-typed in T) iff every variable x of type T in e satisfies (z,7) € T
@ A node n is well-typed iff:
@ every equation is well-typed in I' := n_in 4+ n_out ++ n_vars and in its program;
@ each type of n_in, n_out Or n_vars is int, float or an existing enumeration;

BALTHAZAR PATIACHVILI Inlining in a Verified Synchronous Language Compiler

Context Node inlining Correctness of the node inlining Conclusion Appendix

Typing preservation

Presentation
@ I' , e (e is well-typed in T) iff every variable x of type T in e satisfies (z,7) € T
@ A node n is well-typed iff:
@ every equation is well-typed in I' := n_in + n_out ++ n_vars and in its program;
@ each type of n_in, n_out Or n_vars is int, float or an existing enumeration;

@ (each variable of each clock type of n_in, n out or n_vars is well-typed. |

BALTHAZAR PATIACHVILI Inlining in a Verified Synchronous Language Compiler

Context Node inlining Correctness of the node inlining Conclusion Appendix

Typing preservation

Presentation
@ I' -, e (e is well-typed in T) iff every variable x of type 7 in e satisfies (z,7) € T
@ A node n is well-typed iff:
@ every equation is well-typed in I' := n_in 4+ n_out ++ n_vars and in its program;
@ each type of n_in, n_out Or n_vars is int, float Or an existing enumeration;

@ (each variable of each clock type of n_in, n out or n vars is well-typed. |

@ A program is well-typed if every node is well-typed with no duplicate name.

BALTHAZAR PATIACHVILI Inlining in a Verified Synchronous Language Compiler

Context Node inlining Correctness of the node inlining Conclusion Appendix

Typing preservation

Presentation
@ I' -, e (e is well-typed in T) iff every variable x of type 7 in e satisfies (z,7) € T
@ A node n is well-typed iff:
@ every equation is well-typed in I' := n_in 4+ n_out ++ n_vars and in its program;
@ each type of n_in, n_out Or n_vars is int, float Or an existing enumeration;

@ (each variable of each clock type of n_in, n out or n vars is well-typed. |

@ A program is well-typed if every node is well-typed with no duplicate name.

Goal: program well-typed before inlining = program well-typed after inlining

BALTHAZAR PATIACHVILI Inlining in a Verified Synchronous Language Compiler

Context Node inlining Correctness of the node inlining Conclusion Appendix

Typing preservation

Proofs

@ Renaming variables preserves typing:

'k, ¢€
U(F> |_W1; O'(G)

BALTHAZAR PATIACHVILI Inlining in a Verified Synchronous Language Compiler

Context Node inlining Correctness of the node inlining Conclusion Appendix

Typing preservation

Proofs

@ Renaming variables preserves typing:

'k, ¢€
U(F> |_W1; O'(G)

@ Complete proof scheme: induction on the list of nodes [n,, ..., n;] of the program G
Well-typed nodes

: OO ON®)
B O

Well-typed nodes

BALTHAZAR PATIACHVILI Inlining in a Verified Synchronous Language Compiler

Context Node inlining Correctness of the node inlining Conclusion Appendix

Semantics preservation

Streams

Two equivalent!!! definitions: indexed and coinductive.

Here, only the indexed definition is used.

1 Definition stream (A : Type) := nat -> A. (* Indexed streams *)

(L. Brun, “Mechanized Semantics and Verified Compilation for a Dataflow Synchronous Language with Reset,” 2020. [Online]. Available: https://www.leliobrun.net/files/thesis.
pdf

BALTHAZAR PATIACHVILI Inlining in a Verified Synchronous Language Compiler

https://www.leliobrun.net/files/thesis.pdf
https://www.leliobrun.net/files/thesis.pdf

Context Node inlining Correctness of the node inlining Conclusion Appendix

Semantics preservation

Streams

Two equivalent!!! definitions: indexed and coinductive.

Here, only the indexed definition is used.

1 Definition stream (A : Type) := nat -> A. (* Indexed streams *)

Environment and histories

1 Inductive svalue : Type := absent | present (v : value).

2 Definition env : Type := ident -> option svalue.
3 Definition history : Type := stream env.

(L. Brun, “Mechanized Semantics and Verified Compilation for a Dataflow Synchronous Language with Reset,” 2020. [Online]. Available: https://www.leliobrun.net/files/thesis.
pdf

BALTHAZAR PATIACHVILI Inlining in a Verified Synchronous Language Compiler

https://www.leliobrun.net/files/thesis.pdf
https://www.leliobrun.net/files/thesis.pdf

Context Node inlining Correctness of the node inlining Conclusion Appendix

Semantics preservation

Streams

Two equivalent!!! definitions: indexed and coinductive.

Here, only the indexed definition is used.

1 Definition stream (A : Type) := nat -> A. (* Indexed streams *)

Environment and histories

inc |1(3|5| 2 | 6| 4

1 Inductive svalue : Type := absent | present (v : value). n 11213 4 5 6
2 Definition env : Type := ident -> option svalue.

3 Definition history : Type := stream env. sum (1(4(9| 11 17 | 21

mean|1(2(3(2.75|3.4|3.5

(L. Brun, “Mechanized Semantics and Verified Compilation for a Dataflow Synchronous Language with Reset,” 2020. [Online]. Available: https://www.leliobrun.net/files/thesis.
pdf

BALTHAZAR PATIACHVILI Inlining in a Verified Synchronous Language Compiler

https://www.leliobrun.net/files/thesis.pdf
https://www.leliobrun.net/files/thesis.pdf

Context Node inlining Correctness of the node inlining Conclusion Appendix

Semantics preservation

Semantics of a node

The semantics of an equation/a node are mutually recursive.

Inductive sem node :=

1

2 | SNode : ->

3 find node f G = n ->

4 Forall (sem equation (clock of ins) H) n.(n_eqs) ->
5 sem node G f ins outs.

Inductive sem equation :=

1
2 | SEqApp : ->

3 (v k, sem node f (mask k rs ins) (mask k rs outs)) ->
4 sem _equation G bk H (xs =ck reset f(args) every rs)

BALTHAZAR PATIACHVILI Inlining in a Verified Synchronous Language Compiler

Context Node inlining Correctness of the node inlining Conclusion Appendix

Semantics preservation

Semantics of a node

The semantics of an equation/a node are mutually recursive.

Inductive sem node :=

1

2 | SNode : ->

3 find node f G = n ->

4 Forall (sem equation (clock of ins) H) n.(n_eqs) ->
5 sem node G f ins outs.

Inductive sem equation :=

1
2 | SEqApp : ->

3 (v k, sem node f (mask k rs ins) (mask k rs outs)) ->
4 sem _equation G bk H (xs =ck reset f(args) every rs)

Theorem node inlining sem :

1
2 wt global G ->

3 sem node G f ins outs ->

4 sem _node (node inlining G) f ins outs.

BALTHAZAR PATIACHVILI Inlining in a Verified Synchronous Language Compiler

Context Node inlining Correctness of the node inlining Conclusion Appendix

Semantics preservation

1 node f(wi, xi : int) returns (wo, xo : int); 1 ek g(o ATED) PTG (L int);
2 le:;o =wi+ 1; 2 wvar ,wi', xi', wo', xo',, 1 int;
4 X0 = wi * 4; 3 let
5 tel 4 wo' = wi' + 1;
6 5 x0' = wi' * 4;
7 node g((x) : int) returns ((y) : int); 6 W%' =X + 2;
7 Xi' =z + 3;
8 var :int; 8 y = x0';
9 let (y, z) = f(x+2, z+ 3); 9 Z =Wwo';
10 tel 10 tel

Theorem node _inlining sem : H : [[X) Z]]
. ’ ’

1

2 wt _global G ->

3 sem node G f ins outs ->
L | o 1 1

4 sem _node (node inlining G) f ins outs. H': [Wl y, X1, WO , XO]

BALTHAZAR PATIACHVILI Inlining in a Verified Synchronous Language Compiler

Context Node inlining Correctness of the node inlining Conclusion Appendix

Semantics preservation

Lift reset

1 Inductive sem node :=

2 | SNode (* ... *) « (* ... *) ->

3 find node f G = n ->

4 Forall (sem equation (clock of ins) H) n.(n eqs) ->

5 sem node G f ins outs.

1 Inductive sem equation :=

2 | SEqQApp (* ... *) = (* ... *) ->

3 (v k, sem node f (mask k rs ins) (mask k rs outs)) ->
4 sem _equation G bk H (xs =ck reset f(args) every rs)

BALTHAZAR PATIACHVILI

X 1151326438
rs FIF|T|F|T|F|F
#Rocq| |mask? sum| 1|6
mask! sum 315
mask? sum 6 10|18
sum 116|356 (10|18

Inlining in a Verified Synchronous Language Compiler

Context Node inlining Correctness of the node inlining Conclusion Appendix

Semantics preservation

Lift reset
1 Inductive sem node :=
2 | SNode : ->
3 find node f G = n ->
4 Forall (sem equation (clock of ins) H) n.(n eqs) ->
5 sem node G f ins outs. X 1151312161418
N s FIF|T|F|T|F
1 Inductive sem equation := #Rocq| [mask? sum| 1|6
2 | SEqApp : -> mask! sum 315
3 (v k, sem node f (mask k rs ins) (mask k rs outs)) -> mask? sum 6 110118
4 sem _equation G bk H (xs =ck reset f(args) every rs)
116356 (10|18

sum
Lemma sem node unmask : # Rocq

1

2 (v (k: nat), sem node G f (mask k rs ins) (mask k rs outs)) ->
3 4 (H'" : history),

4 A Forall (sem equation G bk H') (map (lift reset rs) n.(n eqs)).

BALTHAZAR PATIACHVILI Inlining in a Verified Synchronous Language Compiler

Context Node inlining Correctness of the node inlining Conclusion Appendix

Semantics preservation

1 Definition Llift reset (rs : list ident) (eq : equation) : equation :=
2 match eq with

3 | EgqDef x ck e => EgDef x ck e

4 | EqLast x ty ck ¢ rs' => EqLast x ty ck ¢ (rs ++ rs')

5 | EqApp xs ck f args rs => EqApp xs ck f args (rs ++ rs')

6 | EqFby x ck ¢ e rs => EqFby x ck c e (rs ++ rs')

7 end.

1 Lemma sem node unmask :
2 (v (k: nat), sem node G f (mask k rs ins) (mask k rs outs)) ->

3 4 (H' : history), A Forall (sem equation G bk H') (map (lift reset rs) n.(n _eqs)).

BALTHAZAR PATIACHVILI Inlining in a Verified Synchronous Language Compiler

Context Node inlining Correctness of the node inlining Conclusion Appendix

Semantics preservation

Semantics of an equation with a lift_reset

1 Lemma sem equation Llift reset (* ... *) : (¥ ... *) ->

2 (v (k : nat), sem equation G (mask k rs bk) H' eq) ->
3 sem equation G bk (H w H') (lift reset rs eq).

BALTHAZAR PATIACHVILI Inlining in a Verified Synchronous Language Compiler

Context Node inlining Correctness of the node inlining Conclusion Appendix

Semantics preservation

Semantics of an equation with a lift_reset

1 Lemma sem equation Llift reset (* ... *) : (¥ ... *) ->

2 (v (k : nat), sem equation G (mask k rs bk) H' eq) ->
3 sem equation G bk (H w H') (lift reset rs eq).

Intuition : if an equation has a semantics on every mask delimited by reset signals rs, then
the same equation with a lifted reset rs has a semantics on the complete history:.

BALTHAZAR PATIACHVILI Inlining in a Verified Synchronous Language Compiler

Context Node inlining Correctness of the node inlining Conclusion Appendix

Outline

Conclusion

BALTHAZAR PATIACHVILI Inlining in a Verified Synchronous Language Compiler

Context Node inlining Correctness of the node inlining Conclusion Appendix

Conclusion

What has been done

@ Implementation of node inlining compilation pass
@ Syntactic proofs and typing preservation complete
@ Big part of semantics preservation done

BALTHAZAR PATIACHVILI Inlining in a Verified Synchronous Language Compiler

Context Node inlining Correctness of the node inlining Conclusion Appendix

Conclusion

What has been done

@ Implementation of node inlining compilation pass
@ Syntactic proofs and typing preservation complete
@ Big part of semantics preservation done

What is remaining
@ Would it have been easier in LUSTRE?

@ Reestablish compiler correctness
@ Improve dependency analysis to be able to compile more LUSTRE programs

BALTHAZAR PATIACHVILI Inlining in a Verified Synchronous Language Compiler

Context Node inlining Correctness of the node inlining Conclusion Appendix

Outline

Appendix

BALTHAZAR PATIACHVILI Inlining in a Verified Synchronous Language Compiler

Context Node inlining Correctness of the node inlining Conclusion Appendix

Node inlining makes more programs compilable

1 node swap(x, y : int) returns (y2, x2 : int); 1 node foo(x : int) returns (y : int);
2 let x2 = x; 2 var x', y', x2', y2', z : int;

3 y2 = y; 3 let x2' = x';

4 tel 4 y2' =y';

5 5 X' = X;

6 node foo(x : int) returns (y : int); 6 y' o= z;

7 var z : int; 7 y = y2';

8 let (y,) = swap(Xx,); 8 z = x2';

9 tel 9 tel

BALTHAZAR PATIACHVILI Inlining in a Verified Synchronous Language Compiler

Context Node inlining Correctness of the node inlining Conclusion Appendix

Node inlining makes more programs compilable

1 node swap(x, y : int) returns (y2, x2 : int); 1 node foo(x : int) returns (y : int);
2 let x2 = x; 2 var x', y', x2', y2', z : int;

3 y2 = y; 3 let x2' = x';

4 tel 4 y2' =y';

5 5 X' = X;

6 node foo(x : int) returns (y : int); 6 y' o= z;

7 var z : int; 7 y = y2';

8 let (y,) = swap(x,); 8 z = x2';

9 tel 9 tel

(_> § swap)_]

foo

BALTHAZAR PATIACHVILI Inlining in a Verified Synchronous Language Compiler

Context Node inlining Correctness of the node inlining Conclusion Appendix

Node inlining makes more programs compilable

1 node swap(x, y : int) returns (y2, x2 : int); 1 node foo(x : int) returns (y : int);
2 let x2 = x; 2 var x', y', x2', y2', z : int;
3 y2 = y; 3 let x2' = x';
4 tel 4 y2' =y';
5 5 X' = X;
6 node foo(x : int) returns (y : int); 6 y' o= z;
7 var z : int; 7 y = y2';
8 let (y,) = swap(x,); 8 z = x2';
9 tel 9 tel
X (A y

i swap)_]

foo

BALTHAZAR PATIACHVILI Inlining in a Verified Synchronous Language Compiler

	Context
	Lustre/SCADE
	Lustre
	SCADE
	Lustre
	SCADE

	Vélus
	Introduction
	Introduction
	Lustre program / global environment
	Lustre program / global environment
	Lustre program / global environment
	Architecture
	Architecture

	NLustre
	Equations
	Node
	Equations
	Node
	Equations
	Node
	Reset signals
	Reset signals
	Reset signals

	Node inlining
	Description
	Node inlining
	Usages
	Node inlining
	Usages

	Implementation
	Where?
	Where?

	Correctness of the node inlining
	Introduction
	Goal
	Required properties
	Goal
	Required properties

	Syntactic properties
	Presentation
	Properties
	Proofs
	Properties
	Proofs

	Typing preservation
	Presentation
	Presentation
	Presentation
	Presentation
	Proofs
	Proofs

	Semantics preservation
	Streams
	Environment and histories
	Streams
	Environment and histories
	Streams
	Environment and histories
	Semantics of a node
	Semantics of a node
	Lift reset
	Lift reset
	Semantics of an equation with a lift_reset
	Semantics of an equation with a lift_reset

	Conclusion
	Conclusion
	What has been done
	What is remaining
	What has been done
	What is remaining

	Appendix
	Node inlining makes more programs compilable

