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The dataflow synchronous languages Lustre [22] and Scade 6 [15] are domain-specific functional
languages. Source programs transform streams representing the time-varying values of inputs and
outputs, and embedded code that executes in bounded time and memory is generated automati-
cally. Scade 6 is routinely used to develop embedded safety-critical software for rail (train tracking
and brake control), aerospace (fly-by-wire, motor control, and landing gear control), energy gen-
eration (emergency shutdown in power stations), and automotive (ant-lock braking and battery
management) applications.1 Its compiler is qualified to the strictest industrial standards. This
greatly facilitates the traceability arguments required to certify systems since they can be made
between specifications and Scade 6 source programs, rather than to embedded code.

Over the last few years, we have been developing a formalization of, and verified compiler
for, a subset of Scade 6 [6, 7, 8, 10] in the Coq proof assistant [18]. The Vélus project2 has
three main goals. (1) The first goal is to prove end-to-end compiler correctness from a subset
of Scade 6 into Clight for further compilation by the CompCert verified C compiler [28, 5]. We
follow the standard approach [14] of rewriting block-based constructs like state machines into
simpler dataflow operators, which are normalized [8], before being translated into sequences of
imperative commands [6]. It has been necessary to adapt the standard compilation scheme and
intermediate languages [4] to facilitate formal proofs while still generating convincing code. The
resulting correctness theorem links the functional stream semantics of the source language to the
imperative semantics defined in CompCert for the generated assembly code. (2) The second goal
is to formalize, in a proof assistant, the source semantics of a language of streams and functions
on streams. This is necessary for proving compiler correctness, but a machine-checked semantics
is independently interesting and useful. We build on existing formal definitions [22, 17, 14],
but the constraints imposed by the proof assistant have led us to new definitions for modular
reinitialization [7, 12], state machines [10, 31], and a denotational model that takes operator
errors into account [9, 24]. (3) The third goal is to permit proof-assisted reasoning about systems
that incorporate control software written in Scade 6, such that properties verified on the source
language are transferred directly to the generated executables via the compilation correctness
theorem. Recent thesis work is a step in this direction [9, 24].

A significant limitation of Vélus is that it only considers scalar types, that is, integers, floats,
and user-defined enumerations, whereas Scade also provides arrays and they are essential in many
applications for programming filters (FIR/IIR/Kalman), matrix algorithms (state-space represen-
tations/Cholesky decomposition), model predictive control, neural networks, etcetera. Compiling
arrays correctly into efficient embedded code is difficult and a real source of errors. The challenge
in this thesis project is to address this problem using a proof assistant: to verify compilation
correctness, to express semantic models, and to lay the groundwork for interactive program proof.
Ultimately, the aim is to complement a rigorous and expressive programming language for com-
bining dataflow control algorithms, hierarchical state machines, and compute-intensive workloads
on arrays, with the state-of-the-art in machine-assisted formal methods.

1https://www.college-de-france.fr/site/gerard-berry/seminar-2013-04-23-11h00.htm
2https://velus.inria.fr
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State of the Art
Programming language features and compilation techniques for arrays have been developed and
studied for decades. The particular problems posed by dataflow synchronous languages, like Lustre
and Scade 6, come from combining a functional semantics, that includes parallel composition and
stream operators, with the generation of embedded code, that allocates memory statically and is
amenable to worst-case execution time analysis. It is these very features that make these languages
ideal for specifying and reasoning about control algorithms while still allowing automatic code
generation. From the perspective of specification and verification with a proof assistant, it is
instructive to compare the treatment of arrays in the CompCert [5] and CakeML [27] projects. In
the following text, we will also sketch the treatment of arrays in Lustre and Scade 6, and also the
Heptagon and Zelus compilers.

A fundamental problem in functional languages is maintaining a source semantics with referen-
tial transparency and without side-effects, while ensuring an efficient implementation. Consider,
for example, the following array update, with, at left, the program syntax of Scade, and, at right,
its semantics.

y = [ x with [2] = 7 ]; ∀i ∈ [0, length(x)− 1], y.[i] =

{
7, if i = 2

x.[i], otherwise.

The fact that there are two arrays, x and y, implies that an implementation may need to copy
the contents of x into y before updating the single element at 7, for instance, with the imperative
code:

let y = copy(x) in
y.[2] = 7

A typical variation in a stream-based language would be to define y as an initial array “followed
by” an updated version of its previous value:

y = y0 fby [ y with [i] = v ];

A naive implementation would perform two array copies: once for the array update subexpression
and again to update the internal state associated with the fby operator. All of this becomes
increasingly expensive, in terms of execution time and memory use, as the arrays or their elements
become larger. This “aggregate update problem” is common to all functional languages and various
static and dynamic techniques have been proposed to solve it [23]. Many of them, like, for example,
shallow binding [3, 2], require garbage collection, which prevents, or at least complicates, their use
in real-time applications.

Imperative Arrays One approach is to consider that x does not represent an array value, but
rather refers to an object in memory, and to allow this object to be updated by an imperative com-
mand. For example, in C: int *y = x; y[2] = 7;. Or in OCaml: let y = x in y.(2) <- 7.
Here, y is not a new array, but rather points to the same area of memory as x does. The meaning
of such programs depends on the evaluation order and not just on dependencies between variables.
A formal semantics must represent the indirection via memory and formalize execution order. This
is the approach taken in the CompCert [5] and CakeML [27] verified compilers. The semantics
of a language that permits parallel definitions, like x1 = e1 and x2 = e2, which may involve
array updates, must either accept nondeterminism or mandate an evaluation order. Whereas in
a synchronous language, like Lustre or Scade 6, just as in the original Kahn networks [25], the
components of a program evolve in parallel to map inputs to outputs but nevertheless define a
(determinate) function. For Vélus, adding imperative updates would complicate the semantics, in
which each component is represented by a function on streams, and the ambition to reason about
programs by rewriting using algebraic equivalence relations. It would also complicate the inter-
mediate languages and compilation passes. For instance, the correctness proof for the scheduling
pass relies on semantic invariance under reordering, and the invariants for the transformation to
imperative code are stated solely in terms of data dependencies.
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Monads Another approach is to use monads to represent the sequentiality constraints as data
dependencies (the passing of a state from one monadic expression to another) and for the com-
piler to transform the monad into sequential commands. Using monads, a functional semantics
is maintained and efficient code can be generated. This is the approach taken in Haskell and the
subset of Haskell which is verified in the PureCake extension to CakeML [26]. In PureCake there
is a single monad that provides stateful arrays, exception-handling, and a foreign function inter-
face [26, §2]. The semantic model uses a version of interaction trees [35], which permits to encode
sequentiality, divergence as infinite traces of silent steps, and interactions with the environment
as non-deterministic choice (branching). As in process algebra or automata theory, reasoning in-
volves bisimulations of one form or another, and a system evolves through synchronizations with
its environment. This is not the approach taken by synchronous languages which prefer simpler
notions of equivalence and composition that ensure determinism and permit a logical notion of
time, both of which are important properties for safety-critical embedded control software.

Synchronous Languages In Lustre v4, arrays are eliminated by syntactic expansion into basic
equations prior to circuit generation [32]. This approach not suitable for generating software.
The Lustre v6 and Scade 6 languages instead provide a fixed set of iterators for manipulating
arrays (map, fold, etcetera) [29, 15], fuse them where possible, and generate imperative code with
loops. Arrays have a purely functional semantics and the compiler tries to minimize copying by
updating arrays in place within a function. This approach is also taken in other “block diagram”
languages [1]. An extension that permits in-place updates across function boundaries, and also
provides typing annotations to guide optimization, was formalized using semi-linear types and
implemented in the Heptagon compiler [21].3 The types are “semi-linear” because while in-place
writes to arrays must be linear, multiples reads may occur “simultaneously”. Functional arrays
and iterators are treated in another verified Lustre compiler [33, 34], but this work sidesteps
the main scientific questions by simply extending the imperative semantics of CompCert and
generating code with explicit copying at each array operation. It is thus not possible to reason
about programs in terms of streams and stream functions and the generated code is too inefficient
for real applications.

Recent work on arrays in synchronous languages [16, 30] focuses on type systems for represent-
ing array sizes, forbidding array copying unless specifically permitted in the source code (allowing
programmers to better understand and control the resource use of generated code), and aggressive
optimizations based on index manipulations and sharing. The source language in this approach
is enriched with constructs inspired by those of Sisal [20], a general-purpose functional language
for large-scale scientific applications with similar performance to imperative languages [19, §1].
These constructs have been implemented in a prototype [30], added to the Zelus language and
compiler [11], and given a semantics in a coiterative interpreter written in OCaml [13]. An G. Bus-
sone’s ongoing thesis continues this line of work for a compiler that generates Rust code.

Objective
This thesis aims to treat functional arrays in a stream-based language within an end-to-end formal-
ization in a proof assistant. The desired result is a high-level language for programming embedded
software with a formally verified link to efficient implementations in assembly code.

Source language The source language must allow to freely mix dataflow primitives, control
structures, and array operations. It must permit the programming of realistic control applications
and integrate naturally into the functional semantics in Coq [9, 24] to provide both a specification
for the compiler and a base for interactive reasoning about programs. The language will include
array updates, as in the previous example, and array iterators like map, fold, etcetera. Recent
work [30, 13] introduces a new primitive to express array computations using stream operators:
the body of a loop over an array processes the stream of individual elements. It remains to be

3https://gitlab.inria.fr/synchrone/heptagon
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seen how well this idea translates into a formalisation in a proof assistant. Does it allow more
modular rules? Does it facilitate proofs? The candidate will build on previous and ongoing work
in the PARKAS team and strike a compromise between the expressivity offered to programmers
and the complexity of development in a proof assistant.

Compilation A synchronous language compiler transforms the source program step-by-step,
first by rewriting into simpler subsets, and then by transformations through a sequence of inter-
mediate languages. This approach is formalized in the Vélus compiler, where the details of the
transformations and intermediate languages additionally have an important effect on the invari-
ants, and thus the complexity, of correctness proofs. A central scientific question is to determine
the compiler organization and form of intermediate languages (syntax, semantics, and invariants),
such that the proofs are as concise and extensible as possible. This is not just important for our
academic project, but also for transferring the results to an industrial context.

Rewriting Some operations on arrays can be expressed and verified based on rewriting with
equivalence relations in the source language. This is the case with nestings of iterators, like fold,
map, etcetera, for example, the “fusion” expressed in the semantic relation

map f (map g x) = map (f o g) x

potentially allows for the elimination of a loop in generated code. Rewriting can simplify the
language subset to be treated by the compiler backend and proving its correctness only requires a
single semantics, not different source and target semantics, and local invariants. Its effectiveness,
however, depends on finding the right core language subset that carries through to intermediate
languages. For instance, the o operator in the previous rule implies some way of expressing stream
function composition, but the source language only provides certain higher-order operators.

Intermediate Languages Vélus has two main intermediate languages. The first introduces a
notion of state, the second fixes the order of computations. This division facilitates the correctness
proofs. The question now is how best to generalize each of the languages to handle operations
on arrays. It will be necessary to account for array size and type parameters, to express sharing
and copying, and to confront the interrelated constraints of memory allocation and scheduling.
The compiler transforms the stream functions of the source program into equivalent transition
functions with explicit state. In an expression like map f x, the f is a stream function, for
which there is one instance, with its own internal state, for each element of the array x. The
intermediate languages and the compilation passes must thus account for arrays of internal state.
Dynamic allocation, using malloc/free, is avoided in safety critical systems, which means that
specialized allocation schemes must be used within the compiler. It will be crucial to draw on
existing work on Lustre, Lucid synchrone, Scade, and Zelus to find a scheme that works well with
the intermediate languages to simplify invariants and reduce the number of proof obligations.

The compilation pass of Vélus transforms the second intermediate language into Clight. The
current Vélus compiler is defined using the Vint, Vlong, Vfloat, Vsingle scalar values from
CompCert,4 adding arrays will inevitably require using the Vptr value and reasoning about indi-
rections through the memory model of CompCert. Such questions have previously been resolved
on a smaller scale using separation logic predicates [6, §4.2]. It remains to be seen how well this
approach can be adapted for the compilation of arrays. It is not yet clear when best to introduce
Vptr values and the associated memory model. What is the easiest way to reason about shared
memory in a verified compiler, knowing that actual memory addresses, alignment, aliasing, and
byte-level representations must be introduced at some stage?

Proof complexity The Vélus specification has become quite complicated; for each line of spec-
ification there are 10 or more lines of proof. Simply extending the existing prototype with arrays

4https://compcert.org/doc/html/compcert.common.Values.html
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in a brute force manner would not only be difficult, it would not be very interesting. Instead it
will be crucial to restructure the compiler passes as a library of modular and reusable elements,
whose formal definitions clarify and assist reasoning about the transformation of functional spec-
ifications to efficient embedded code. Just as separation logic provides a means to isolate proofs
about aliasing and byte-level representations, so too could we hope to factor out some aspects
related to the compilation of arrays. Such a backend would allow also eventually allow for the
addition of records, tagged unions, and abstract data types. A good solution would provide a
general and independent interface to CompCert, providing a compilation path for different source
languages, not just the one formalized in Vélus. A very good solution would provide new solutions
and techniques that could also be applied in other contexts.
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